Acta Scientific Nutritional Health (ASNH)(ISSN: 2582-1423)

Research Article Volume 7 Issue 2

Hydrothermal Treatment on Reducing Saponins, Phytic Acid, and Oxalates of Sesame (Sesamum indicum L.) Seeds

Harold Toros and Romel Guzmán-Alvarez

Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas, Venezuela

*Corresponding Author: Romel Guzmán-Alvarez, Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas, Venezuela.

Received: December 28, 2022; Published: January 11, 2023


We studied the effect on three different varieties of sesame seeds (DV-9; Guesa-4 and Guesa-150 with bark and peeled, the application of a hydrothermal treatment at 55°C for 5; 10 and 15 minutes, on the reduction of antinutritional factors (saponins, phytic acid and oxalates). The most effective treatment in reducing antinutritional factors was the hydrothermal treatment without bark for 15 minutes because it reduced the content for the DV-9 variety, of saponins, phytic acid and oxalates by 22.54; 80.61 and 83.25% respectively, for the Guesa-4 variety by 12.78; 71.71 and 79.59% respectively and for the Guesa-150 variety by 10.43; 66.72 and 90.46% respectively. These results indicate that anti-nutritional factors (saponins, phytic acid and oxalates) can be reduced in sesame seed with simple and effective processes that could be used by growers without any expensive equipment.

Keywords: Sesame, Oxalate, Saponins, Phytic Acid, Nutritional Factors, Antinutritional Factors


  1. Martínez M. “Antinutrientes proteicos de las leguminosas: tipos, toxicidad y efectos fisiológicos”. Trabajo de grado en Nutrición Humana y Dietética, Universidad de Valladolid (2016).
  2. Gómez L and Nader M. “Productos elaborados con semillas de chía y sésamo: composición química, aceptabilidad, satisfacción y conocimiento sobre sus propiedades nutricionales”. Actualización en Nutrición 13 (2012): 250-267.
  3. Pineda M. “Respuesta del cultivo de ajonjolí (Sesamum indicum L, Pedaliaceae) a la fertilización al suelo y foliar en Aldea El Paredón Buena Vista, La Gomera, Escuintla, Guatemala”. Tesis de Ingeniero Agrónomo, Universidad Rafael Landiva (2009).
  4. Production statistics. FAO, Rome, Italy (2016).
  5. Cruz E. “La importancia del cultivo de ajonjolí (Sesamum indicum ) en México”. Monografía de Ingeniero Agrónomo, Universidad Autónoma Agraria “Antonio Narro” (2003).
  6. Anilakumar K., et al. “Nutritional, medicinal and industrial uses of sesame (Sesamum indicum ) seeds-An Overview”. Agriculturae Conspectus Scientificus 75 (2010): 159-168.
  7. Elizalde A., et al. “Factores antinutricionales en semillas”. Facultad de Ciencias Agropecuarias 7 (2009): 45-54.
  8. Toros H and Guzmán-Alvarez R. “Reduction of Antinutritional Factors of Three Varieties of Sesame (Sesamum indicum ) Seeds When Applying Heat-Alkaline Treatments". Acta Scientific Nutritional Health 6.3 (2021): 59-68.
  9. Makinde F and Akinoso R. “Nutrient composition and effect of processing treatments on anti nutritional factors of Nigerian sesame (Sesamum indicum Linn) cultivars”. International Food Research Journal 20 (2013): 2293-2300.
  10. Olagunju A and Ifesan B. “Changes in nutrient and antinutritional contents of sesame seeds during fermentation”. Journal of Microbiology, Biotechnology and Food Sciences 2 (2013): 2407-2410.
  11. Obadoni B and Ochuko P. “Phytochemical Studies and Comparative Efficacy of the Crude Extracts of Some Homeostatic Plants in Edo and Delta States of Nigeria”. Global Journal of Pure and Applied Science 8 (2001): 203-208.
  12. Rodríguez J. “Determinación y cuantificación de saponinas en las hojas de la cabuya (Furcraea andina) para su posible uso como tensoactivo en detergentes biodegradables”. Trabajo de grado de Químico y Farmacéutico, Universidad de Guayaquil (2017).
  13. Wheeler EL and Ferrel RE. “A method for phytic acid determination in wheat fractions”. Cereal Chemistry 48 (1971): 312-316.
  14. Kayode R., et al. “Physico-chemical and antinutritional characterization of the kernels of some mango (Mangifera indica) cultivars grown in Western parts of Nogeria”. Food Science and Quality Management 22 (2013): 1-8.
  15. Underwood G. “Quantitative Analysis”. 5th Prentice Hall Publication, London (1986).
  16. Jimoh W., et al. “Effect of processing on some minerals, anti-nutrients and nutritional composition of sesame (Sesamum indicum) seed meals”. Electronic Journal of Environmental, Agricultural and Food Chemistry 7 (2011): 79-85.
  17. Momoh A., et al. “The effects of different treatments on the phytochemicals, proximate, and mineral contents of beniseeds (Sesamum indicum Linn)”. Global Advanced Research Journal of Biotechnology 1 (2012): 008-011.
  18. Bello F., et al. “Evaluation of some antinutritional factors in oil-free white Sesamum indicum seed cake”. International Journal of Food Nutrition and Safety 4 (2013): 27-33.
  19. Okoronkwo N., et al. “Assessment of potential values of Sesamum indicum seed”. International Journal of Arts and Sciences 07 (2014): 19-27.
  20. Nwalo N. “Genetic diversity of Nigerian Sesame cultivars (Sesamum indicum L) based on simple sequence repeat (SSR) markers and its relationship with phytochemicals”. International Journal of Current Microbiology and Applied Sciences 4 (2015): 898-908.
  21. Nwobasi C and Attamah C. “Proximate analysis and phytochemical properties of sesame (Sesamum indicum ) seeds grown and consumed in Abakaliki, Ebonyi state, Nigeria”. International Journal of Health and Medicine 2 (2017): 1-4.
  22. Alagbaoso S., et al. “Effect of processing on the nutritional and anti nutritional properties of Canavalia plagiosperma piper seeds”. European Journal of Food Science and Technology 3 (2015): 45-69.
  23. Gbadamosi S and Osungbade O. “Effects of cooking and fermentation on the antinutrients, total phenolic contents and antioxidant properties of sandbox (Hura crepitans) seeds”. International Food Research Journal 24 (2017): 1621-1627.
  24. Francis G., et al. (2001). “Anti-nutritional factors present in plant derived alternative fish feed ingredients and their effects in fish”. Aquaculture 199 (2001): 197-227.
  25. Heng J., et al. “Stability of pea DDMP saponin and the mechanism of its decomposition”. Food Chemistry 99 (2006): 326-331.
  26. Shi J., et al. “Kinetic study of saponins B stability in navy beans under different processing conditions”. Journal of Food Engineering 93 (2009): 59-65.
  27. Quispe F., et al. “A Kinetic approach to saponin extraction during washing of quinoa (Chenopodium quinoa Willd.) seeds”. Journal of Food Process Engineering 36 (2013): 1-9.
  28. Oenning G., et al. “Degradation of oat saponins during heat processing - effect of pH, stainless steel, and iron at different temperatures”. Journal of Agricultural and Food Chemistry 42 (1994): 2578-2582.
  29. Makinde F and Akinoso R. “Comparison between the nutritional quality of flour obtained from raw, roasted and fermented sesame (Sesamum indicum ) seed grown in Nigeria”. Acta Scientiarum Polonorum 13 (2014): 309-319.
  30. Ogungbenle H and Onoge F. “Nutrient composition and functional properties of raw, defatted and protein concentrate of sesame (Sesamum indicum) flour”. European Journal of Biotechnology and Bioscience 2 (2014): 37-43.
  31. Okudu H., et al. “Nutrients and anti-nutrients contents of white beniseed cultivar (Sesamum indicum ) in nigeria”. Direct Research Journal of Agriculture and Food Science 4 (2016): 290-293.
  32. Chichester C., et al. “Advances in food research”. Academic Press. USA (1982).
  33. Abbas Y and Ahmad A. “Impact of processing on nutritional and antinutritional factors of legumes: a review”. Annals of Food Science and Technology 19 (2018): 199-215.
  34. Duhan A., et al. “Phytic acid content of chick pea and black gram: varietal differences and effect of domestic processing and cooking methods”. Journal of Science of Food and Agriculture 49 (1989): 449-457.
  35. Udensi E., et al. “Antinutrient factors of vegetable cowpea (Sesquipedalis) seeds during thermal processing”. Pakistan Journal of Nutrition 6 (2007): 194-197.
  36. Siddhuraju P and Becker K. “Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of indian tribal pulse, Mucuna pruriens var. Utilis”. Journal of Agricultural and Food Chemistry 49 (2001): 3058-3067.
  37. Hossain M. “Detoxification of linseed and sesame meal and evaluation of their nutritive value in the diet of common carp (Cyprinus carpio)”. Asian Fisheries Science 3 (1990): 169.183.
  38. Adane T., et al. “Effect of processing method on the proximate composition, mineral content and antinutritional factors of taro (Colocasia esculenta, L.) grown in Ethiopia”. African Journal of Food, Agriculture, Nutrition and Development 13 (2013): 7383-7398.
  39. Bullock J., et al. In vitro hydrolysis of phytate at 95 °C and the influence of metal ion on the rate”. Journal of the Science of Food and Agriculture 63 (1993): 261-263.
  40. Kataria A., et al. (1988). “Effect of domestic processing and cooking of the antinutrients of black gram”. Food Chemistry 30 (1988): 149-156.
  41. Gahlawat P and Sehgal S. “Phytic acid, saponins and polyphenols in weaning foods prepared from oven heated gren gram and cereals”. American Association of Cereal Chemists 69 (1992): 463-464.
  42. Thompson LU. “Potential health benefits and problems associated with antinutrients in foods”. Food Research International 26 (1993): 131-149.
  43. Febles C. “Estudio del contenido de fitatos en derivados de cereales de consumo en canarias”. Tesis Doctoral, Universidad de la Laguna (1998).
  44. Manikantan M., et al. “Selection of process parameters for producing high quality defatted sesame flour at pilot scale”. Journal of Food Science and Technology 52 (2015): 1778-1783.
  45. Singh P and Saxena N. “Variation in oxalate and mineral contents of Bathua Vegetables collected from different sites”. Indian Journal of Nutrition and Dietetics 10 (1973): 84-90.
  46. Schempf J., et al. “Effect of sodium ion impurity on thermal decomposition reaction of calcium oxalate as studied by absorption infrared spectrometric and thermoanalysis techniques”. Analytical Chemistry 13 (1965): 1704-1706.
  47. Kumoroa A., et al. “Kinetics of calcium oxalate reduction in taro (Colocasia esculenta) corm chips during treatments using baking soda solution”. Procedia Chemistry 9 (2014): 102-112.
  48. Albihn P and Savage G. “The effect of cooking on the location and concentration of oxalate in three cultivars of New Zealand grown oca (Oxalis tuberosa Mol)”. Journal of the Science of Food and Agriculture 81 (2001): 1027-1033.
  49. Faheed F., et al. “Physiological and ultrastructural studies on calcium oxalate crystal formation in some plants”. Turkish Journal of Botany 37 (2013): 139-152.
  50. Polli A., et al. “Structural development of the fruits and seeds in three mistletoe species of Phoradendron (Visceae: Santalaceae)”. Rodriguésia 67 (2016): 649-659.
  51. et al. “From Dialogue Corpora to Dialogue Systems: Generating a Chatbot with Teenager Personality for Preventing Cyber-Pedophilia. Text, Speech, and Dialogue, Lecture Notes in Computer Science., eds Sojka P, Horák A, Kopeček I, Pala K (Springer International Publishing, Cham) 9924 (2016): 531-539.


Citation: Harold Toros and Romel Guzmán-Alvarez. “Hydrothermal Treatment on Reducing Saponins, Phytic Acid, and Oxalates of Sesame (Sesamum indicum L.) Seeds". Acta Scientific Nutritional Health 7.2 (2023): 55-61.


Copyright: © 2023 Harold Toros and Romel Guzmán-Alvarez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Acceptance rate30%
Acceptance to publication20-30 days
Impact Factor1.316

Indexed In

News and Events

Contact US