Acta Scientific Nutritional Health (ISSN: 2582-1423)

Short Communication Volume 4 Issue 1

Bioactive Compounds within Herbs and Spices Contributing to Anti Diabetic Action in Type2 Diabetes Mellitus (T2DM) - A Short Communication

Kulvinder Kochar Kaur*

Scientific Director, Dr Kulvinder Kaur Centre for Human Reproduction, Jalandhar, Punjab, India

*Corresponding Author: Scientific Director, Dr Kulvinder Kaur Centre for Human Reproduction, Jalandhar, Punjab, India.

Received: November 25, 2019; Published: December 12, 2019

×

&nspb;&nspb;Culinary herbs and spices are utilized as traditional medicine for ages for the therapy of diabetes mellitus (DM) along with its comorbidities, with various publications that propose use of medicinal plants. But mostly exactly what are the biologically active substances of these herbs and spices with their mode of action is not clear. We ourselves reviewed roles of monoterpenes, PTP1B Inhibitors, other plant products like soya bean pulses, aloe vera etc [1-5].

&nspb;&nspb;The antidiabetic action of usually used herbs and spices got analyzed in the study by Pereira et al., utilizing virtual screening regarding 18 anti diabetes mellitus (DM) drug targets utilizing the DIA-DB webserver. Basically they wanted to find the bioactive agents of these plants and get the understanding of their molecular mode of working against diabetes mellitus (DM).

×

References

  1. Siegel R., et al. “Cancer statistics”. CA: A Cancer Journal for Clinicians 62 (2012): 10-29.
  2. Baskar R., et al. “Cancer and radiation therapy: Current advances and future directions”. International Journal of Medical Sciences 9 (2012): 193-199.
  3. De Graaf DC., et al. “Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy”. Journal of Proteomics 72 (2009): 145-154.
  4. Habermann E. “Bee and wasp venoms”. Science 177 (1972): 314-322. 
  5. Hancock RE., et al. “Cationic bactericidal peptides”. Advances in Microbial Physiology 37 (1995): 135-175.
  6. Higashijima T., et al. “NMR saturation transfer and line shape analyses of cyclic tetradepsipeptide AM toxin II: conformational equilibrium with very unequal populations”. FEBS Letters 105 (1979): 337-340.
  7. Nakajima T. “Biochemistry of vespid venoms”. In: Tu AT, editor. Handbook of Natural Toxins. Marcel Dekker; New York, USA (1984): 109-133.
  8. Yang H., et al. “A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith)”. Toxicon 51 (2008): 289-296.
  9. Piek T. “Pharmacology of hymenoptera venom”. In: Tu AD, editor. Handbook of Natural Toxins. Marcel Dekker; New York, USA 2 (1984): 135-185.
  10. Xu X., et al. “The mastoparanogen from wasp”. Peptides 27 (2006b): 3053-3057.
  11. Argiolas A and Pisano JJ. “Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus”. Journal of Biological Chemistry 260 (1985): 1437-1444.
  12. Nakajima T., et al. “Amphiphilic peptides in wasp venom”. Biopolymers 25 (1986): S115-S121.
  13. Hancock RE., et al. “Cationic bactericidal peptides”. Advances in Microbial Physiology 37 (1995): 135-175.
  14. Wu M and Hancock RE. “Interaction of the cyclic antimicrobial cationic peptide bectenecin with the outer and cytoplasmic membrane”. Journal of Biological Chemistry 274 (1999): 29-35.
  15. Liu X., et al. “A novel bradykinin-like peptide from skin secretions of the frog, Rana nigrovittata”. Journal of Peptide Science 14 (2008): 626-630.
  16. Hirai Y., et al. “A new mast cell degranulatin peptide “mastoparano” in the venom of Vespula lewisii”. Chemical and Pharmaceutical Bulletin 27 (1979): 1942-1944.
  17. Raghuraman H., et al. “A membrane-active peptide with diverse functions”. Bioscience Reports 27 (2007): 189-223.
  18. Blazquez PS and Garzon J. “Mastoparan reduces the supraspinal analgesia mediated by lX/6-opioid receptors in mice”. European Journal of Pharmaceutical Sciences 258 (1994): 159-162.
  19. Zhang P., et al. “Mastoaparan-7 rescues botulinum toxin-A poisoned neurons in a mouse spinal cord cell culture model”. Toxicon 76 (2013): 37-43.
  20. Souza BM., et al. “Investigating the effect of different positioning of lysine residues along the peptide chain of mastoparans for their secondary structures and biological activities”. Amino Acids (2011).
  21. Silva AVR., et al. “The effects of C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems”. Biochimica et Biophysica Acta 1838 (2014):  2357-2368.
  22. Fanghänel S., et al. “Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state”. Plos one 9 (2014):  e99653.
  23. Chen Y and Liu L. “Modern methods for delivery drugs across the blood-brain barrier”. Advanced Drug Delivery Reviews 64 (2012): 640-655.
  24. Pooga M., et al. “Cell penetration by transportan”. The FASEB Journal 12 (1998):  67-77.
  25. Yandek LE., et al. “Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers”. Biophysical Journal 92 (2007):  2434-2444.
  26. Webling KE., et al. “Galanin receptors and ligands”. Frontiers in Endocrinology (Lausanne) 3 (2012): 1-14.
  27. Counts SE., et al. “Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer’s disease”. Neurodegenerative Diseases 5 (2008): 228-231.
  28. Montecucco C and Schiavo G. “Mechanism of action of tetanus and botulinum neurotoxins”. Molecular Microbiology 13 (1995): 1-8.
  29. Simpson L. “The life story of a botulinum toxin molecule”. Toxicon 68 (2013): 40. 
  30. Jones S and Howl J. “Biological applications of the receptor mimetic peptide Mastoparan”. Current Protein and Peptide Science 7 (2006): 501-508.
  31. Todokoro Y., et al. “Structure of tightly membrane-bound Mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR”. Biophysical Journal 91 (2006): 1368-1379.
  32. Higashijima T., et al. “Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-biding regulatory proteins (G proteins)”. Journal of Biological Chemistry 263 (1988): 6491-6494.
  33. Lagerström MC and Schiöth HB. “Structural diversity of G protein-coupled receptors and significance for drug discovery”. Nature Reviews Drug Discovery 7 (2008): 339-357.
  34. Thathiah A and De Strooper B. “The role of G protein-coupled receptors in the pathology of Alzheimer’s Disease”. Nature Reviews Neuroscience 12 (2011): 73-87.
  35. Guixa-Gonzalez R., et al. “Crosstalk within GPCR heteromers in schizophrenia and Parkinson’s Disease: Physical or just functional?” Current Medicinal Chemistry 19 (2012): 1119-1134.
  36. González-Maeso J., et al. “Neurotransmitter receptor-mediated activation of G-proteins in brains of suicide victims with mood disorders: Selective supersensitivity of alpha(2A)-adrenoceptors”. Molecular Psychiatry 7 (2002):  755-767.
  37. Nakajima T., et al. “Amphiphilic peptides in wasp venom”. Biopolymers 25 (1986): S115-S121.
  38. Konno K., et al. “Identification of bradykinins in solitary wasp venoms”. Toxicon 40 (2002): 309-312.
  39. Picolo G., et al. “Bradykinin-related peptides in the venom of the solitary wasp Cyphononyx fulvognathus”. Biochemical Pharmacology 79 (2010): 478-486.
  40. Rocha e Silva M., et al. “Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin”. American Journal of Physiology 156 (1949): 261-273.
  41. Moreau ME., et al. “The kallikrein-kinin system: Current and future pharmacological targets”. Journal of Pharmacological Sciences 99 (2005):  6-38.
  42. Piek T., et al. “Block of synaptic transmission in insect CNS by toxins from the venom of the wasp Megascolia flavifrons (Fab.)”. Comparative Biochemistry and Physiology C 87 (1987): 287-295.
  43. Noda M., et al. “Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia”. Journal of Neurochemistry 101 (2007): 397-410.
  44. Golias Ch., et al. “The kinin system—Bradykinin: Biological effects and clinical implications. Multiple role of the kinin system—Bradykinin”. Hippokratia 11 (2007): 124-128. 
  45. Thornton E., et al. “Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury”. Molecules 15 (2010): 6598-6618.
  46. Yasuyoshi H., et al. “Protective effect of bradykinin against glutamate neurotoxicity in cultured rat retinal neurons”. Investigative Ophthalmology and Visual Science 41 (2000): 2273-2278.
  47. Mortari MR., et al. “Inhibition of acute nociceptive responses in rats after i.c.v. injection of Thr6-bradykinin, isolated from the venom of the social wasp, Polybia occidentalis”. Bharatiya Janata Party 151 (2007):  860-869.
  48. Pellegrini M and Mierke DF. “Threonine6-bradykinin: Molecular dynamics simulations in a biphasic membrane mimetic”. Journal of Medicinal Chemistry 40 (1997): 99-104.
  49. Strømgaard K., et al. “Recent Advances in the Medicinal Chemistry of Polyamine Toxins”. Mini-Reviews in Medicinal Chemistry 1 (2001): 317-338.
  50. Andersen TF., et al. “Uncompetitive Antagonism of AMPA Receptors: Mechanistic Insights from Studies of Polyamine Toxin Derivatives”. Journal of Medicinal Chemistry 49 (2006): 5414-5423.
  51. Eldefrawi AT., et al. “Structure and synthesis of a potent glutamate receptor antagonist in wasp venom”. Proceedings of the National Academy of Sciences of the United States of America 85 (1988): 4910-4913.
  52. Mellor IR and Usherwood PNR. “Targeting ionotropic receptors with polyamine-containing toxins.
  53. Strømgaard K., et al. “Polyamine toxins: Development of selective ligands for ionotropic receptors”. Toxicon 45 (2005): 249-254.
  54. Strømgaard K and Mellor I. “AMPA Receptor Ligands: Synthetic and Pharmacological Studies of Polyamines and Polyamine Toxins”. Medicinal Research Reviews 24 (2004): 589-620.
  55. Traynelis SF., et al. “Glutamate Receptor Ion Channels: Structure, Regulation, and Function”. Pharmacological Reviews 62 (2010): 405-496.
  56. Lemoine D., et al. “Ligand-Gated Ion Channels: New Insights into Neurological Disorders and Ligand Recognition”. Chemical Reviews 112 (2012): 6285-6318.
  57. Poulsen MH., et al. “Inhibition of AMPA Receptors by Polyamine Toxins is Regulated by Agonist Efficacy and Stargazin”. Neurochemical Research 39 (2014): 1906-1913.
  58. Lipton SA. “Pathologically activated therapeutics for neuroprotection”. Nature Reviews Neuroscience 8 (2007): 803-808.
  59. Johnson JW., et al. “Recent insights into the mode of action of memantine and ketamine”. Current Opinion in Pharmacology 20 (2015): 54-63.
  60. Tikhonov DB. “Ion channels of glutamate receptors: Structural modelling”. Molecular Membrane Biology 24 (2007):135-147.
  61. Nørager NG., et al. “Development of potent fluorescent polyamine toxins and application in labeling of ionotropic glutamate receptors in hippocampal neurons”. ACS Chemical Biology 8 (2013): 2033-2041.
  62. Danielisová V., et al. “Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat”. Neurochemical Research 33 (2008): 1057-1064.
  63. Danielisová V., et al. “Bradykinin postconditioning protects pyramidal CA1 neurons against delayed neuronal death in rat hippocampus”. Cellular and Molecular Neurobiology 29 (2009): 871-878.
  64. Conn HJ. “Staining procedures used by the biologi- cal stain commission of polybia-MPI, a novel anti- microbial peptide, in multi-drug resistant leukemic cells”. Cancer Letters 278 (1960): 65-72.
  65. Wu T and Li M. “The cytolytic action of all-D masto- paran M on tumor cell lines”. International Journal of Tissue Reactions 21.2 (1999): 35-42.
  66. Lin C., et al. “Efficacy of mastoparan-AF alone and in combination with clinically used antibiotics on nosocomial multidrug-resistant acinetobacter baumannii”. Saudi Journal of Biological Sciences 24.5 (2017): 1023-1029.
  67. Bechara C and Sagan S. “Cell-penetrating peptides: 20 years later, where do we stand?”. FEBS Letters 587.12 (2013):1693-1702.
  68. Copolovici DM., et al. “Cell-penetrating peptides: Design, synthesis, and applications”. ACS Nano 8.3 (2014): 1972-1994.
×

Citation

Citation: Kulvinder Kochar Kaur. “Bioactive Compounds within Herbs and Spices Contributing to Anti Diabetic Action in Type2 Diabetes Mellitus (T2DM) - A Short Communication". Acta Scientific Nutritional Health 4.1 (2020): 88-92.




Metrics

Acceptance rate30%
Acceptance to publication20-30 days
Impact Factor1.316

Indexed In





News and Events


  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is December 25, 2024.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of "Best Article of the Issue"

Contact US