Unsuspected Statistical Traits of Interacting Fermions
A Plastino1* and D Monteoliva1,2
1Instituto de F´ısica La Plata–CCT-CONICET Universidad Nacional de La Plata, Argentina
2Com. de Investigaciones Cient´ıficas Provincia de Buenos Aires, Argentina
*Corresponding Author: A Plastino, Instituto de F´ısica La Plata–CCT-CONICET Universidad Nacional de La Plata, Argentina.
Received:
October 20, 2022; Published: October 31, 2022
Abstract
We consider finite numbers N of interacting fermions and address the question of their order- disorder properties.. Two well known fermion-fermion interactions are employed: spin-flip and pairing. The second is responsible for superconductivity. In considering their order-disorder properties we look specially at their dependence on N. One finds that, for special N values, unsuspected features emerge.
Keywords: Interacting Fermions; Nuclear Interactions; Spin-Flip; Superconductivity; Order Properties
References
- Pennini F and Plastino A. “Complexity and disequilibrium as telltales of superconductivity”. Physica A 506 (2018): 828-834.
- Cervia MJ., et al. “Lipkin model on a quantum computer”. arXiv arXiv:2011.04097 (2021).
- Balian R., et al. “Temperature Dependence of Even-Odd Effects in Small Superconducting Systems”. arXiv arXiv:cond-mat/9802006 (1998).
- Sedrakian A and Clark JW. “Superfluidity in nuclear systems and neutron stars”. The European Physical Journal A 55 (2019): 167.
- Lipkin HJ., et al. “Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory”. Nuclear Physics 62 (1965): 188-198.
- Lerma HS and Dukelsky J. “The Lipkin-Meshkov-Glick model from the perspective of the SU (1,1) Richardson-Gaudin models”. Journal of Physics Conference Series 492 (2014): 12013.
- Providencia C., et al. “The Lipkin Model in Many- Fermion System as an Example of the su (1,1) times su (1,1)-Algebraic Model”. Progress of Theoretical and Experimental Physics 116 (2006): 87-105.
- Nolting W. “Fundamentals of Many-Body Physics”. Springer: Berlin/Heidelberg, Germany, (2009).
- Cambiaggio MC and Plastino A. “Quasi spin pairing and the structure of the Lipkin Model”. Zeitschrift für Physik A Atoms and Nuclei 288 (1978): 153-159.
- Ring P and Schuck P. “The Nuclear Many-Body Problem”. Springer: Berlin/Heidelberg, Germany (1980).
- De Llano M., et al. “Multiple phases in a new statistical boson fermion model of superconductivity”. Physica A: Statistical Mechanics and its Applications 317 (2003): 546-564.
- Uys H., et al. “Generalized statistics and high-Tc superconductivity”. Physics Letters A 289 (2001): 264-272.
- Plastino A Ferri GL and Plastino AR. “Spectral explanation for statistical odd-even staggering in few fermions systems”. Quantum Reports 3 (2021): 166-172.
- Plastino A and Moszkowski SM. “Simplified model for illustrating Hartree-Fock in a Lipkin- model problem”. Il Nuovo Cimento A (1965-1970) 47 (1978): 470-474.
- L´opez-Ruiz R., et al. “A statistical measure of complexity”. Physics Letters A 209 (1995): 321-326.
- L´opez-Ruiz R. “Complexity in some physical systems”. International Journal of Bifurcation and Chaos 11 (2001): 2669-2673.
- Rudnicki L., et al. “Monotone measures of statis- tical complexity”. Physics Letters A 380 (2016): 377-380.
- L´opez-Ruiz R., et al. “A Statistical Measure of Complexity in Concepts and Recent Advances in Generalized Information Measures and Statistics”. Kowalski, A., Rossig- noli, R., Curado, E.M.C., Eds.; Bentham Science Books: New York, NY, USA, (2013): 147-168.
- Rossignoli R and Plastino A. “Thermal effects and the interplay between pairing and shape deformations”. Physical Review C 32 (1985): 1040-1048.
- Nigmatullin R and Prokopenko M. “Thermodynamic efficiency of interactions in self-organizing systems”. Entropy 23 (2021): 757.
Citation
Copyright