Acta Scientific Applied Physics (ASAP)

Review Article Volume 2 Issue 9

Application of Thermal Statistical Tools to Newton’s Gravity

Mir Hameeda1,2,3,4, A Plastino5* and MC Rocca4,5,6,7

1Department of Physics, Government Degree College, Tangmarg, Kashmir, India
2Inter University Center for Astronomy and Astrophysics, Pune India
3School of Physics, Damghan University, Damghan, Iran
4Canadian Quantum Research Center, Canada
5Departamento de F´ısica, Universidad Nacional de La Plata, Argentina
6Departamento de Matem´atica, Universidad Nacional de La Plata, Argentina
7Consejo Nacional de Investigaciones Cient´ıficas y Tecnologicas (IFLP-CCT-CONICET)-C. C. 727, Argentina

*Corresponding Author: A Plastino, Departamento de F´ısica, Universidad Nacional de La Plata, Argentina.

Received: July 27, 2022; Published: August 25, 2022

Abstract

We develop a statistical physics’ picture of classical Newtonian gravitation and uncover rather notable en- tropic features. In particular, applying the classical canonical ensemble treatment of Newtonian gravitation (NG) generates unsuspected statistical constraints on important physical quantities entering the thermo- dynamics of gravitation. Some of these quantities are, for instance, the masses involved. We work in Gibbs’ canonical ensemble. One must appeal for this to a generalization of the Dimensional Regulation approach of Bollini and Giambiagi. For a full explanation of this theory see Dimensional Regularization and Non-Renormalizable Quantum Field Theories. Cambridge Scholars Publishing (2021). ISSN: 1-5275–6395-2.

Keywords: Statistical Mechanics; Classical Gravity; Entropy; Partition Functions; Dimensional Regularization

References

  1. MC Rocca and A Plastino. “Dimensional Regularization and Non-Renormalizable Quantum Field Theories”. Cambridge Scholars Publishing (2021).
  2. Mir Hameeda., et al. PRD 103 (2021): 106019.
  3. Mir Hameeda., et al. EPJ C 81 (2021): 146.
  4. Mir Hameeda., et al. Physics of the Dark Universe 32 (2021): 100816.
  5. Mir Hameeda., et al. General Relativity and Gravitation 53 (2921): 41.
  6. A Katz. “Principles of Statistical Mechanics: The Information Theory Approach”. W. H. Freeman, San Francisco, (1967).
  7. Pathria RK. “Statistical Mechanics”. 2nd. ed., Butterworth-Heinemann, Oxford, UK, (1996).
  8. Tolman RC. “The principles of Statistical Mechanics”. Great Britain, University Press, Oxford, (2010).
  9. Frederick Reif. “Fundamentals of Statistical and Thermal Physics”. 1 ed., Waveland Press, (2009).
  10. A Jellal and A Merdaci. “Entropies for coupled harmonic oscillators and temperature”. Journal of Holography Applications in Physics 3 (2022): 15.
  11. Mir Hameeda., et al. “Classical Partition Function for Non-Relativistic Gravity”. Axioms 10 (2021): 121.
  12. S Gradshteyn and I M Ryzhik. “Table of Integrals, Series and Products”. Academic Press, Inc (1980).
  13. J D Barrow. “Time-varying G”. Monthly Notices of the Royal Astronomical Society 282 (1996): 1397-1406.

Citation

Citation: A Plastino., et al. “Application of Thermal Statistical Tools to Newton’s Gravity". Acta Scientific Applied Physics 2.9 (2022): 11-15.

Copyright

Copyright: © 2022 A Plastino., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate32%
Acceptance to publication20-30 days
Impact Factor1.014

Indexed In




News and Events


Contact US





//