Ariyanachi K1, Lakshmi Jyothi Tadi2*, Supriya Garapati3 and Pravin Pissude4
1Assistant Professor, Department of Anatomy, All India Institute of Medical Sciences, Bibinagar, India
2Additional Professor/Covid Nodal Officer, Department of Microbiology, All India Institute of Medical Sciences, Bibinagar, India
3Associate Professor, Department of Anatomy, All India Institute Of Medical Sciences, Bibinagar, India
4Associate Professor, Department of Community Medicine, ESIC Medical College And Hospital, Hyderabad, India
*Corresponding Author: Lakshmi Jyothi Tadi, Additional Professor/Covid Nodal Officer, Department of Microbiology, All India Institute of Medical Sciences, Bibinagar, India.
Received: August 21,2021; Published: September 20, 2021
Introduction: The novel SARS CoV2 coronavirus is believed to have emerged from bats in Wuhan in 2019 last yearAs of July 8, 2021, 20 vaccines worldwide have been licensed; 96 vaccines are in human clinical trials, 32 of which have entered the final stage of testing. VLP proved to be a promising alternative to soluble antigens. Because they have the conformation and composition of natural viruses, their shape, size, repeated antigen structure and geometry will trigger stronger humoral and cellular immune responses. Plants have a complex mechanism for eukaryotic protein production and also support the amplification of a large number of plant-specific viruses.
Method: 35 articles from Medline, Embase, Google Scholar, Scopus. PubMed were reviewed using the key words SARS CoV-2 plant-based vaccines.
Review: Virus-like particles (VLPs) are self-assembling structures derived from viral antigens, which mimic the natural structure of viruses but lack the viral genome. VLPs are similar in size and shape to real coronaviruses, but they lack nucleic acid and are therefore not infectious. The Phase 1 trial of Medicago's plant virus-like particles started in July 2020, involving 180 healthy volunteers aged 1855. All preparations are well tolerated, and adverse events after vaccination are usually mild to moderate. British American Tobacco, through its US biotechnology subsidiary Kentucky Bioprocessing (KBP), is developing a potential COVID19 vaccine and is currently undergoing preclinical testing. Using its plant-based Fast Pharming® system, iBio, a biotechnology innovator and biologics contract manufacturing organization, reported on its progress in the development of the second-generation vaccine candidate subunit IBIO202, which aims to prevent SARSCoV2 infection.
Conclusion: Now is the time to explore the true potential of plant-based vaccines, proven technologies that have the potential to play an important role in promoting global health.
Keywords: SARS-CoV-2; Pandemic; Plant-Based Vaccines; Virus Like Particles; Covid-19
Citation: Lakshmi Jyothi Tadi., et al. “Plant-based Vaccines for SARS-CoV-2 Novel Corona Virus - A Review”. Acta Scientific Women's Health 3.10 (2021): 15-20.
Copyright: © 2021 Lakshmi Jyothi Tadi., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.