Acta Scientific Pharmaceutical Sciences (ASPS)(ISSN: 2581-5423)

Editorial Volume 5 Issue 8

Can Artificially Designed Protein Combat Cancer?

Bivas Nag1, Kanagavalli Mathivathanan2, Debraj Mukhopadhyay3 and Dattatreya Mukherjee4*

1Student and Under Graduate Research Scholar, Department of Life science and Biochemistry, St. Xavier’s College (Autonomous), Mumbai, Maharashtra, India
2Assistant Professor, Department of Obstetrics and Gynecology, Maharshi Menhi Homeopathic Medical College, Katihar, Bihar, India
3Public Health Scholar, Department of Public Health, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
4MBBS Student and Undergraduate Research Scholar, International School, Jinan University, Guangzhou, Guangdong, China

*Corresponding Author: Dattatreya Mukherjee, MBBS Student and Undergraduate Research Scholar, International School, Jinan University, Guangzhou, Guangdong, China.x

Received: May 28, 2021; Published: July 01, 2021

  Cell invokes a plethora of mechanisms to maintain its genomic integrity. When replication and transcription occur on the same strand, to lessen their collision probability, a genome-wide bias prevails in gene distribution, so that, Replication and Transcription happen co-directionally [1,2]. But still, when such collisions take place, DDR components transiently remove RNAP from the template, to make room for the replication machinery to slide past the disputed region. Many factors help in the prevention of such collisions Gre proteins, Fob1 in Replication Fork Barrier site, FACT (chromatin remodeling), RECQL5 helicase, etc. [3].

  But in precancerous and cancerous cells, where high replication stress prevails, due to mutation in the p53 gene or the DDR components malfunction, which may lead to, Double-Strand Breaks, due to replication run-off of upstream forks, or a fork may regress after a head-on collision, leading to endolytic cleavage of DNA by RuvABC, etc. [4]. Recent studies show that mutations in genes responsible to prevent this type of collisions, give rise to cancer-prone conditions like Fanconi Anaemia, Ataxia-ocular apraxia type II, Amyotrophic lateral sclerosis type IV, etc. [5,6].

  For a long time, cancer-therapeutic drugs are made to target various DDR components present especially in cancerous cells [7]. But let’s think the other way round can we utilize the high frequency of Replication-Transcription collision in cancerous cells and design a certain protein that can identify the collision sites and bind to and fuse both Transcription-Replication types of machinery, to irreversibly cause Replication Fork Stalling, the precancerous and cancerous cells will eventually get degraded as their genome will not replicate. The question here is If a protein can be devised, able to detect the collision sites and fuse the two types of machinery irreversibly, can division and metastasis of pre-/cancerous be prevented?

  At the onset of collision, the cell synthesizes Fob1 protein to bind to the DNA sequence, present in between the soon-to-collide Replication-Transcription machinery, known as Replication Fork Barrier (RFB) site, to prevent a collision [8]. The Fob1 protein’s gene sequence can be procured and can be used to incorporate our designer protein sequence in place of the Fob1 gene, using Group 2 Intron mediated gene replacement. so that whenever the cell generates the Fob1 synthesis signal, our Protein-X will be synthesized in place of Fob1. Using Bioinformatics tools, Protein-X should be designed in such a way, that it must have 2 specific domains to bind to the RNA polymerase and the DNA polymerases (like NtrC and other transcriptional factors), and form a bridge-like bond in between them, that is permanent. By this, the two colliding machineries will fuse, causing multiple irreversible fork stalls throughout the genome at the collision sites, ultimately causing failure in genome duplication. And thereby, cancer-prone cells will eventually degrade.

  To summarise, the approval of the first cancer treatment was based on a targeted DDR inhibitor in a specified tumour-specific DDR-deficient context is likely only the beginning of what might be a key role for DDR-based drugs in future cancer therapy. Furthermore, the revolution in bioinformatics has opened up a slew of new possible cancer-fighting targets, but the viability of all of these approaches is still questionable.

Acknowledgements

Thanks to Editorial team of ACTA Scientific Pharmaceutical Sciences [ISSN: 2581-5423] for inviting us and giving us the opportunity to write on this topic.

Author’s Contribution

Bivas Nag wrote the first draft. Dattatreya Mukherjee did the revisions and editing. Kanagavalli Mathivathanan and Debraj Mukhopdhyay did the final editing and all authors gave consent for the publication.

References

  1. Sankar T S., et al. “The nature of mutations induced by replication-transcription collisions”. Nature7610 (2016): 178-181.
  2. Hoeijmakers J H J. “Genome maintenance mechanisms for preventing cancer”. Nature6835 (2001): 366-374.
  3. García-Muse T and Aguilera A. “Transcription-replication conflicts: how they occur and how they are resolved”. Nature Reviews Molecular Cell Biology9 (2016): 553-563.
  4. Gaillard H., et al. “Replication stress and cancer”. Nature Reviews Cancer5 (2015): 276-289.
  5. Mohanty D. “Understanding complexity of Fanconi anaemia”. Indian Journal of Medical Research 2 (2016): 132.
  6. Tubbs A and Nussenzweig A. “Endogenous DNA Damage as a Source of Genomic Instability in Cancer”. Cell 4 (2017): 644-656.
  7. Lord C J and Ashworth A. “The DNA damage response and cancer therapy”. Nature 7381 (2012): 287-294.
  8. Puigvert J C., et al. “Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies”. FEBS Journal2 (2015): 232-245.

Citation

Citation: Dattatreya Mukherjee., et al. “Can Artificially Designed Protein Combat Cancer?". Acta Scientific Pharmaceutical Sciences 5.8 (2020): 01-02.

Copyright

Copyright: © 2021 Dattatreya Mukherjee., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate32%
Acceptance to publication20-30 days

Indexed In




News and Events


  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is November 30, 2022.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of “Best Article of the Issue”.
  • Welcoming Article Submission
    Acta Scientific delightfully welcomes active researchers for submission of articles towards the upcoming issue of respective journals.
  • Contact US