Acta Scientific Medical Sciences (ASMS)(ISSN: 2582-0931)

Research Article Volume 10 Issue 2

Ab Initio Whole Cell Kinetic Model of Parabacteroides distasonis APCS2/PD (pdiMLD26)

Magaa Lakshmi Dhinakaran1,2, Tristan Zhi Xian Tay1,2, Sohnnakshee Murugesu1,2, Aguilar Normi Luisa Cinco1,2, Pandiyan Srinithiksha1,2 and Maurice Han Tong Lin2,3,4*

1School of Medicine, College of Medical Sciences, University of Guyana, Guyana
2Management Development Institute of Singapore, Singapore
3Newcastle Australia Institute of Higher Education, University of Newcastle, Australia
4HOHY PTE LTD, Singapore

*Corresponding Author: Maurice Han Tong Ling, Management Development Institute of Singapore, Singapore.

Received: January 09, 2026; Published: January 29, 2026

Abstract

Parabacteroids distasonis is a key component of the human gut microbiome, and noted for its ability to produce metabolites that are beneficial for overall gut health. Hence, P. distasonis may be a potential target for metabolic engineering, which can benefit from a whole cell kinetic model. Currently, there are no reported kinetic models for the P. distasonis. Therefore, this study aims to create a whole cell simulatable kinetic model of P. distasonis APCS2/PD using an ab initio approach by identifying enzymes from its published genome. The resulting model, pdiMLD26, encompasses of 703 metabolites, 290 enzymes and 752 enzymatic reactions; which acts as a foundational framework for future research.

 Keywords: Whole-cell Model; Kinetic Model; Gut Microbiome; Differential Equations; AdvanceSyn Toolkit

References

  1. Wu WKK. “Parabacteroides distasonis: An Emerging Probiotic?” Gut9 (2023): 1635-1636.
  2. Cui Y., et al. “Roles of Intestinal Parabacteroides in Human Health and Diseases”. FEMS Microbiology Letters 369 (1 (2022): fnac072.
  3. Fernandez-Julia P., et al. “Cross-Feeding Interactions Between Human Gut Commensals Belonging to the Bacteroides and Bifidobacterium Genera When Grown on Dietary Glycans”. Microbiome Research Reports2 (2022): 12.
  4. Chamarande J., et al. “Parabacteroides distasonis Properties Linked to the Selection of New Biotherapeutics”. Nutrients19 (2022): 4176.
  5. Cuffaro B., et al. “In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice”. Cells9 (2020): 2104.
  6. Wang K., et al. “Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids”. Cell Reports1 (2019): 222-235.e5.
  7. Duan J., et al. “Therapeutic Potential of Parabacteroides distasonis in Gastrointestinal and Hepatic Disease”. MedComm12 (2024): e70017.
  8. Wei H., et al. “Gut Commensal Parabacteroides distasonis Exerts Neuroprotective Effects in Acute Ischemic Stroke with Hyperuricemia via Regulating Gut Microbiota-Gut-Brain Axis”. Journal of Translational Medicine1 (2024): 999.
  9. Yaqub MO., et al. “Microbiome-Driven Therapeutics: From Gut Health to Precision Medicine”. Gastrointestinal Disorders1 (2025): 7.
  10. Khanijou JK., et al. “Metabolomics and Modelling Approaches for Systems Metabolic Engineering”. Metabolic Engineering Communications 15 (2022): e00209.
  11. Gudmundsson S and Nogales J. “Recent Advances in Model-Assisted Metabolic Engineering”. Current Opinion in Systems Biology 28 (2021): 100392.
  12. Richelle A., et al. “Towards a Widespread Adoption of Metabolic Modeling Tools in Biopharmaceutical Industry: A Process Systems Biology Engineering Perspective. npj Systems Biology and Applications1 (2020): 6.
  13. Lee YQ., et al. “Genome-scale metabolic model-guided systematic framework for designing customized live biotherapeutic products”. NPJ Systems Biology and Applications1 (2025): 73.
  14. Prabhu S., et al. “Derivative-Free Domain-Informed Data-Driven Discovery of Sparse Kinetic Models”. Industrial & Engineering Chemistry Research5 (2025): 2601-2615.
  15. Yeo KY., et al. “Ab Initio Whole Cell Kinetic Model of Yarrowia lipolytica CLIB122 (yliYKY24)”. Medicon Medical Sciences4 (2025): 01-06.
  16. Foster CJ., et al. “Building Kinetic Models for Metabolic Engineering”. Current Opinion in Biotechnology 67 (2021): 35-41.
  17. Lázaro J., et al. “Enhancing genome-scale metabolic models with kinetic data: resolving growth and citramalate production trade-offs in Escherichia coli”. Bioinformatics Advances1 (2025): vbaf166.
  18. Cortés-Martín A., et al. “Isolation and Characterization of a Novel Lytic Parabacteroides Distasonis Bacteriophage φPDS1 from the Human Gut”. Gut Microbes1 (2024): 2298254.
  19. Okuda S., et al. “KEGG Atlas mapping for global analysis of metabolic pathways”. Nucleic Acids Research 36 (2008): W423-W426.
  20. Cho JL and Ling MH. “Adaptation of Whole Cell Kinetic Model Template, UniKin1, to Escherichia coli Whole Cell Kinetic Model, ecoJC20”. EC Microbiology2 (2021): 254-260.
  21. Stevanoska M., et al. “Physiologically Based Kinetic (PBK) Modeling as a New Approach Methodology (NAM) for Predicting Systemic Levels of Gut Microbial Metabolites”. Toxicology Letters 396 (2024): 94-102.
  22. Rios Garza D., et al. “Metabolic Models of Human Gut Microbiota: Advances and Challenges”. Cell Systems2 (2023): 109-121.
  23. Kwan ZJ., et al. “Ab Initio Whole Cell Kinetic Model of Stutzerimonas balearica DSM 6083 (pbmKZJ23)”. Acta Scientific Microbiology2 (2024): 28-31.
  24. Maiyappan S., et al. “Four Ab Initio Whole Cell Kinetic Models of Bacillus subtilis 168 (bsuLL25) 6051-HGW (bshSM25), N33 (bsuN33SS25), FUA2231 (bsuGR25)”. Journal of Clinical Immunology and Microbiology2 (2025): 1-6.
  25. Sim BJH., et al. “Multilevel Metabolic Modelling Using Ordinary Differential Equations”. Encyclopedia of Bioinformatics and Computational Biology (Second Edition), eds Ranganathan S, Cannataro M, Khan AM (Elsevier, Oxford) (2025): 491-498.
  26. Müller-Hill B. “The lac Operon: A Short History of a Genetic Paradigm (Berlin, Germany)” (1996).
  27. Churchward G., et al. “Transcription in Bacteria at Different DNA Concentrations”. Journal of Bacteriology2 (1982): 572-581.
  28. Gray WJ and Midgley JE. “The Control of Ribonucleic Acid Synthesis in Bacteria. The Synthesis and Stability of Ribonucleic Acid in Rifampicin-Inhibited Cultures of Escherichia coli”. The Biochemical Journal2 (1971): 161-169.
  29. Kubitschek HE. “Cell Volume Increase in Escherichia coli After Shifts to Richer Media”. Journal of Bacteriology1 (1990): 94-101.
  30. Hu P., et al. “Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins”. PLoS Biology4 (2009): e96.
  31. So L-H., et al. “General Properties of Transcriptional Time Series in Escherichia coli”. Nature Genetics6 (2011): 554-560.
  32. Schwanhäusser B., et al. “Corrigendum: Global Quantification of Mammalian Gene Expression Control”. Nature7439 (2013): 126-127.
  33. Maurizi MR. “Proteases and Protein Degradation in Escherichia coli”. Experientia2 (1992): 178-201.
  34. Murthy MV., et al. “UniKin1: A Universal, Non-Species-Specific Whole Cell Kinetic Model”. Acta Scientific Microbiology10 (2020): 04-08.
  35. Bar-Even A., et al. “The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters”. Biochemistry21 (2011): 4402-4410.
  36. Ling MH. “AdvanceSyn Toolkit: An Open Source Suite for Model Development and Analysis in Biological Engineering”. MOJ Proteomics & Bioinformatics4 (2020): 83‒86.
  37. Yong B. “The Comparison of Fourth Order Runge-Kutta and Homotopy Analysis Method for Solving Three Basic Epidemic Models”. Journal of Physics: Conference Series 1317 (2019): 012020.
  38. Ling MH. “COPADS IV: Fixed Time-Step ODE Solvers for a System of Equations Implemented as a Set of Python Functions”. Advances in Computer Science: An International Journal3 (2016): 5-11.
  39. Saisudhanbabu T., et al. “Ab Initio Whole Cell Kinetic Model of Limosilactobacillus fermentum EFEL6800 (lfeTS24)”. EC Clinical and Medical Case Reports4 (2025): 01-04.
  40. Arivazhagan M., et al. “Ab Initio Whole Cell Kinetic Model of Bifidobacterium bifidum BGN4 (bbfMA24)”. Acta Scientific Nutritional Health1 (2025): 42-45.
  41. Senthilkumar A., et al. “Ab Initio Whole Cell Kinetic Model of Lactobacillus acidophilus NCFM (lacAS24)”. Journal of Clinical Immunology and Microbiology1 (2025): 1-5.
  42. Wong TB., et al. “Ab Initio Whole Cell Kinetic Models of Escherichia coli BL21 (ebeTBSW25) and MG1655 (ecoMAL25)”. Scholastic Medical Sciences2 (2025): 01-04.
  43. Ambel WB., et al. “UniKin2 - A Universal, Pan-Reactome Kinetic Model”. International Journal of Research in Medical and Clinical Science2 (2025): 77-80.
  44. Ahn-Horst TA., et al. “An Expanded Whole-Cell Model of E. coli Links Cellular Physiology with Mechanisms of Growth Rate Control”. npj Systems Biology and Applications1 (2022): 30.
  45. Chagas M da S., et al. “Boolean Model of the Gene Regulatory Network of Pseudomonas aeruginosa CCBH4851”. Frontiers in Microbiology 14 (2023): 1274740.
  46. Hao T., et al. “Reconstruction of Metabolic-Protein Interaction Integrated Network of Eriocheir sinensis and Analysis of Ecdysone Synthesis”. Genes4 (2024): 410.

Citation

Citation: Maurice Han Tong Ling., et al.Ab Initio Whole Cell Kinetic Model of Parabacteroides distasonis APCS2/PD (pdiMLD26)”.Acta Scientific Medical Sciences 10.2 (2026): 52-56.

Copyright

Copyright: © 2026 Maurice Han Tong Ling., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate30%
Acceptance to publication20-30 days
Impact Factor1.403

Indexed In





Contact US