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Abstract

Parabacteroids distasonis is a key component of the human gut microbiome, and noted for its ability to produce metabolites that

are beneficial for overall gut health. Hence, P. distasonis may be a potential target for metabolic engineering, which can benefit from

a whole cell kinetic model. Currently, there are no reported kinetic models for the P, distasonis. Therefore, this study aims to create a

whole cell simulatable kinetic model of P. distasonis APCS2/PD using an ab initio approach by identifying enzymes from its published

genome. The resulting model, pdiMLD26, encompasses of 703 metabolites, 290 enzymes and 752 enzymatic reactions; which acts as

a foundational framework for future research.
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Introduction

Parabacteroides distasonis is an essential member of the core
gut microbiome [1]. With an average abundance of 1.27% in the
gut microbiota, this unassuming microbial agent has been recently
identified to play a crucial role in the host wellbeing [2]. A Gram
negative, anaerobic bacterium originating from the Tannerellaceae
family from the Bacteroides genus, this specialist fibrolytic
bacterium has a rage of degrading enzymes, essential for essential
for the breakdown of complex dietary polysaccharides and

host-derived glycans within the human gut, facilitating nutrient

extraction and microbial cross-feeding [3,4]. There is evidence of
P, distasonis displaying anti-inflammatory and immunomodulatory
properties [5], producing metabolites that are beneficial for
overall gut health [6,7], and may even improve recovery of stroke
patients [8]. Hence, metabolic engineering of P. distasonis has been

considered [9].

The process of metabolic engineering often begins with

mathematical modelling, which helps prioritise genetic

modifications [10,11]. The two dominant approaches [12,13],

genome-scale constraint-based models (GSMs) and kinetic models
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(KMs), offer different capabilities. While GSMs are effective for
estimating metabolic fluxes, their scope is mainly rate-centred. KMs
provide predictions of both reaction rates and metabolite yields,
giving them a functional edge [14]. They also support in silico
gene knock-ins more naturally than GSMs [15]. These advantages
make KMs especially valuable for screening engineering ideas
computationally before undertaking experiments. As a result, the
scientific community has increasingly emphasised the need to

develop and expand kinetic model frameworks [16,17].

However, there is no KM of P. distasonis to-date. Hence, this
study aims to construct a KM of P. distasonis APCS2/PD using
ab initio approach by identifying enzymes from its published
genome [18], and identifying the corresponding reaction from
KEGG [19]. The result is a whole cell KM of P. distasonis APCS2 /PD,
named as pdiMLD using the nomenclature proposed by Cho and
Ling [20], which consists of 703 metabolites, 290 enzymes with
corresponding transcriptions and translations, and 752 enzymatic
reactions. This model may part of a collation of kinetic models to
predict metabolite levels of gut microbiome as recently proposed
[21,22].

Materials and Methods
Identification of reactome

The genome of Parabacteroides distasonis APCS2/PD (NCBI
RefSeq assembly GCF_018279895.1; NCBI GenBank Accession NZ

CP042285.1) was used as source to identify enzymatic genes using

the process previously described [15,23,24]. Briefly, each enzymatic
gene was identified as a presence of complete Enzyme Commission
(EC) number in the GenBank record and mapped into reaction IDs
via KEGG Ligand Database for Enzyme Nomenclature [19]. For
example, EC 1.1.1.23 (https://www.genome.jp/entry/1.1.1.23)
catalyses reactions R01158, R01163, and R03012; where the

substrates and products of each rection can be identified.

Model development

The model was developed using the ordinary differential
equation (ODE) formats described in Sim. et al. [25]. Using
BioNumbers-derived parameters, transcription in E. coli can
be quantitatively approximated. Around 3000 RNA polymerase
molecules are present (BioNumbers 106199) [26] but only about a
quarter are active (BioNumbers 111676) [27]. Each active enzyme
extends RNA at 22 nucleotides per second (BioNumbers 104109)
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[28], each weighing about 339.5 Da. This yields roughly 5600 kDa
of RNA per second (9.3e-18 grams per second). Normalized to the
7e-16 litre volume [29] and distributed across 4225 coding genes
(BioNumbers 105443) [30], this corresponds to 2.92 micromolar
per gene per second. With an mRNA lifetime of 107.56 seconds
(BioNumbers 107666) [31] (0.93% decay/s), the transcriptional
rate law becomes d[mRNA]/dt = 0.00292 - 0.0093[mRNA].
Translation proceeds at about 0.278 peptides/s per transcript
(BioNumbers 106382) [32], and degradation removes proteins
at 2.78e-6 grams per second (BioNumbers 109924) [33]. Thus:
d[peptide]/dt=0.278[mRNA] - 0.00000278[peptide]. The broader
metabolic system was represented as ODEs [23,34]| with median
kinetic constants (kcat = 13.7 per second, Km = 1 mM) [35] and

documented following AdvanceSyn guidelines [36].

Model simulation

The constructed model was tested for simulatability using
AdvanceSyn Toolkit [36]. Initial concentrations of all mRNA and
enzymes were set to 0 mM. Initial concentrations of all metabolites
were set to 1 mM except the following which were set to 1000 mM:
(I) C00001 (Water), (II) C0O0002 (ATP), (III) C00003 (NAD+), (IV)
C00004 (NADH), (V) C00005 (NADPH), (VI) C00006 (NADP+), (VII)
C00007 (Oxygen), (VIII) C00011 (Carbon Dioxide), (IX) C00014
(Ammonia), (X) C00015 (UDP), (XI) C00025 (L-Glutamate), (XII)
C00031 (D-Glucose), (XIII) C00037 (Glycine), (XIV) C00041
(L-Alanine), (XV) C00047 (L-Lysine), (XVI) C00049 (L-Aspartate),
(XVII) C00064 (L-Glutamine), (XVIII) C00065 (L-Serine), (XIX)
C00073 (L-Methionine), (XX) C00097 (L-Cysteine), (XXI) C00133
(D-Alanine), (XXII) C00148 (L-Proline). The model was simulated
using the fourth-order Runge-Kutta method [37,38] from time
zero to 3600 seconds with timestep of 0.1 second, and the
concentrations of metabolites were bounded between 0 millimolar
and 1000 millimolar. The simulation results were sampled every 2

seconds.

Results and Discussion

The annotated genome of P distasonis APCS2/PD consists of
4512 genes, including 4344 protein coding sequences. 290 unique
EC numbers consisting of 752 enzymatic reactions involving 703
metabolites were identified and developed into a model based on
AdvanceSyn Model Specification [36]. In addition, 580 ODEs acting
as placeholder for enzyme transcriptions and translations were
added.
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The pdiMLD26 model was executed within the AdvanceSyn
Toolkit [36], and the presence of valid simulation outputs in
Figure 1 confirms that the model is well-formed and free of syntax
issues that commonly arise in detailed kinetic models. Although
accumulation of ADP and oxaloacetate is observed, this effect stems
from the median kinetic parameters applied throughout the model
[35], which homogenize reaction behaviours and distort relative
fluxes. These outcomes should be regarded only as structural
tests as argued in recent model constructions [15,24,39-43].
Nonetheless, this work provides a complete and simulatable whole-
cell kinetic model of P distasonis APCS2/PD. It offers a flexible
basis for incorporating more refined kinetics, expanding metabolic
coverage, or conducting computational experiments on how
limited cellular resources are allocated across competing pathways
[44-46]. This model may also be incorporated into a collation of
kinetic models, to be a meta-model for the predicting metabolite
levels produced by various interacting gut microorganisms as

recently proposed [21,22].

Figure 1: Selection of Simulation Results. A sample of 6 me-
tabolites were shown - 4 of which (in dotted lines - water, ATP,
and L-glutamine, and L-alanine) were set at 1000 mM in the
model while the other 2 (in solid lines - ADP, and oxaloacetate)
were set at 1 mM in the model. The relative concentrations over
time shows fluctuations - an advantage of KMs over GSMs. It
is important to note that these values only show that the KM is
simulatable rather than deriving important insights as median

kinetic parameters applied throughout the model.
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Conclusion

In this study, we present an ab initio whole cell kinetic model of
Parabacteroides distasonis APCS2 /PD. The resulting kinetic model,
pdiMLD26; comprising of 703 metabolites, 290 enzymes with
corresponding transcriptions and translations, and 752 enzymatic

reactions.

Supplementary Materials

Reaction descriptions and model can be download from https://
bit.ly/pdiMLD26.
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