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Abstract
Parabacteroids distasonis is a key component of the human gut microbiome, and noted for its ability to produce metabolites that 

are beneficial for overall gut health. Hence, P. distasonis may be a potential target for metabolic engineering, which can benefit from 
a whole cell kinetic model. Currently, there are no reported kinetic models for the P. distasonis. Therefore, this study aims to create a 
whole cell simulatable kinetic model of P. distasonis APCS2/PD using an ab initio approach by identifying enzymes from its published 
genome. The resulting model, pdiMLD26, encompasses of 703 metabolites, 290 enzymes and 752 enzymatic reactions; which acts as 
a foundational framework for future research.
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Introduction

Parabacteroides distasonis is an essential member of the core 
gut microbiome [1]. With an average abundance of 1.27% in the 
gut microbiota, this unassuming microbial agent has been recently 
identified to play a crucial role in the host wellbeing [2]. A Gram 
negative, anaerobic bacterium originating from the Tannerellaceae 
family from the Bacteroides genus, this specialist fibrolytic 
bacterium has a rage of degrading enzymes, essential for essential 
for the breakdown of complex dietary polysaccharides and 
host-derived glycans within the human gut, facilitating nutrient 

extraction and microbial cross-feeding [3,4]. There is evidence of 
P. distasonis displaying anti-inflammatory and immunomodulatory 
properties [5], producing metabolites that are beneficial for 
overall gut health [6,7], and may even improve recovery of stroke 
patients [8]. Hence, metabolic engineering of P. distasonis has been 
considered [9].

The process of metabolic engineering often begins with 
mathematical modelling, which helps prioritise genetic 
modifications [10,11]. The two dominant approaches [12,13], 
genome-scale constraint-based models (GSMs) and kinetic models 
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(KMs), offer different capabilities. While GSMs are effective for 
estimating metabolic fluxes, their scope is mainly rate-centred. KMs 
provide predictions of both reaction rates and metabolite yields, 
giving them a functional edge [14]. They also support in silico 
gene knock-ins more naturally than GSMs [15]. These advantages 
make KMs especially valuable for screening engineering ideas 
computationally before undertaking experiments. As a result, the 
scientific community has increasingly emphasised the need to 
develop and expand kinetic model frameworks [16,17].

However, there is no KM of P. distasonis to-date. Hence, this 
study aims to construct a KM of P. distasonis APCS2/PD using 
ab initio approach by identifying enzymes from its published 
genome [18], and identifying the corresponding reaction from 
KEGG [19]. The result is a whole cell KM of P. distasonis APCS2/PD, 
named as pdiMLD using the nomenclature proposed by Cho and 
Ling [20], which consists of 703 metabolites, 290 enzymes with 
corresponding transcriptions and translations, and 752 enzymatic 
reactions. This model may part of a collation of kinetic models to 
predict metabolite levels of gut microbiome as recently proposed 
[21,22].

Materials and Methods

Identification of reactome

The genome of Parabacteroides distasonis APCS2/PD (NCBI 
RefSeq assembly GCF_018279895.1; NCBI GenBank Accession NZ_
CP042285.1) was used as source to identify enzymatic genes using 
the process previously described [15,23,24]. Briefly, each enzymatic 
gene was identified as a presence of complete Enzyme Commission 
(EC) number in the GenBank record and mapped into reaction IDs 
via KEGG Ligand Database for Enzyme Nomenclature [19]. For 
example, EC 1.1.1.23 (https://www.genome.jp/entry/1.1.1.23) 
catalyses reactions R01158, R01163, and R03012; where the 
substrates and products of each rection can be identified.

Model development

The model was developed using the ordinary differential 
equation (ODE) formats described in Sim., et al. [25]. Using 
BioNumbers-derived parameters, transcription in E. coli can 
be quantitatively approximated. Around 3000 RNA polymerase 
molecules are present (BioNumbers 106199) [26] but only about a 
quarter are active (BioNumbers 111676) [27]. Each active enzyme 
extends RNA at 22 nucleotides per second (BioNumbers 104109) 

[28], each weighing about 339.5 Da. This yields roughly 5600 kDa 
of RNA per second (9.3e-18 grams per second). Normalized to the 
7e-16 litre volume [29] and distributed across 4225 coding genes 
(BioNumbers 105443) [30], this corresponds to 2.92 micromolar 
per gene per second. With an mRNA lifetime of 107.56 seconds 
(BioNumbers 107666) [31] (0.93% decay/s), the transcriptional 
rate law becomes d[mRNA]/dt = 0.00292 – 0.0093[mRNA]. 
Translation proceeds at about 0.278 peptides/s per transcript 
(BioNumbers 106382) [32], and degradation removes proteins 
at 2.78e-6 grams per second (BioNumbers 109924) [33]. Thus: 
d[peptide]/dt = 0.278[mRNA] – 0.00000278[peptide]. The broader 
metabolic system was represented as ODEs [23,34] with median 
kinetic constants (kcat = 13.7 per second, Km = 1 mM) [35] and 
documented following AdvanceSyn guidelines [36].

Model simulation

The constructed model was tested for simulatability using 
AdvanceSyn Toolkit [36]. Initial concentrations of all mRNA and 
enzymes were set to 0 mM. Initial concentrations of all metabolites 
were set to 1 mM except the following which were set to 1000 mM: 
(I) C00001 (Water), (II) C00002 (ATP), (III) C00003 (NAD+), (IV) 
C00004 (NADH), (V) C00005 (NADPH), (VI) C00006 (NADP+), (VII) 
C00007 (Oxygen), (VIII) C00011 (Carbon Dioxide), (IX) C00014 
(Ammonia), (X) C00015 (UDP), (XI) C00025 (L-Glutamate), (XII) 
C00031 (D-Glucose), (XIII) C00037 (Glycine), (XIV) C00041 
(L-Alanine), (XV) C00047 (L-Lysine), (XVI) C00049 (L-Aspartate), 
(XVII) C00064 (L-Glutamine), (XVIII) C00065 (L-Serine), (XIX) 
C00073 (L-Methionine), (XX) C00097 (L-Cysteine), (XXI) C00133 
(D-Alanine), (XXII) C00148 (L-Proline). The model was simulated 
using the fourth-order Runge-Kutta method [37,38] from time 
zero to 3600 seconds with timestep of 0.1 second, and the 
concentrations of metabolites were bounded between 0 millimolar 
and 1000 millimolar. The simulation results were sampled every 2 
seconds. 

Results and Discussion

The annotated genome of P. distasonis APCS2/PD consists of 
4512 genes, including 4344 protein coding sequences. 290 unique 
EC numbers consisting of 752 enzymatic reactions involving 703 
metabolites were identified and developed into a model based on 
AdvanceSyn Model Specification [36]. In addition, 580 ODEs acting 
as placeholder for enzyme transcriptions and translations were 
added. 
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The pdiMLD26 model was executed within the AdvanceSyn 
Toolkit [36], and the presence of valid simulation outputs in 
Figure 1 confirms that the model is well-formed and free of syntax 
issues that commonly arise in detailed kinetic models. Although 
accumulation of ADP and oxaloacetate is observed, this effect stems 
from the median kinetic parameters applied throughout the model 
[35], which homogenize reaction behaviours and distort relative 
fluxes. These outcomes should be regarded only as structural 
tests as argued in recent model constructions [15,24,39-43]. 
Nonetheless, this work provides a complete and simulatable whole-
cell kinetic model of P. distasonis APCS2/PD. It offers a flexible 
basis for incorporating more refined kinetics, expanding metabolic 
coverage, or conducting computational experiments on how 
limited cellular resources are allocated across competing pathways 
[44-46]. This model may also be incorporated into a collation of 
kinetic models, to be a meta-model for the predicting metabolite 
levels produced by various interacting gut microorganisms as 
recently proposed [21,22].

Figure 1: Selection of Simulation Results. A sample of 6 me-
tabolites were shown – 4 of which (in dotted lines – water, ATP, 

and L-glutamine, and L-alanine) were set at 1000 mM in the 
model while the other 2 (in solid lines – ADP, and oxaloacetate) 
were set at 1 mM in the model. The relative concentrations over 

time shows fluctuations – an advantage of KMs over GSMs. It 
is important to note that these values only show that the KM is 
simulatable rather than deriving important insights as median 

kinetic parameters applied throughout the model.

Conclusion

In this study, we present an ab initio whole cell kinetic model of 
Parabacteroides distasonis APCS2/PD. The resulting kinetic model, 
pdiMLD26; comprising of 703 metabolites, 290 enzymes with 
corresponding transcriptions and translations, and 752 enzymatic 
reactions.

Supplementary Materials

Reaction descriptions and model can be download from https://
bit.ly/pdiMLD26.
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