Acta Scientific Agriculture (ASAG)(ISSN: 2581-365X)

Literature Review Volume 9 Issue 2

Artificial Intelligence for the Design of Agricultural Machines and Preliminary Design of Maizor QK2913, a Humanoid Robot that Transforms into a Corn Harvester

Jaime Cuauhtemoc Negrete*

Technical Writer Graduated in Antonio Narro Agrarian Autonomous University, Mexico

*Corresponding Author: Jaime Cuauhtemoc Negrete, Technical Writer Graduated in Antonio Narro Agrarian Autonomous University, Mexico.

Received: January 06, 2025; Published: January 29, 2025

Abstract

In the last decade, agriculture has undergone a significant technology-driven transformation. Artificial intelligence (AI) has established itself as an essential tool in this process, offering innovative solutions that optimize the design and operation of agricultural machines. As the agricultural sector faces challenges such as climate change, resource scarcity, and the need to increase productivity, the integration of AI into machinery design is presented as a viable and effective response. From automated irrigation systems to smart harvesters that use algorithms to maximize harvesting, the applications of AI are vast and varied. These innovations not only seek to increase productivity, but also to reduce the environmental impact of agricultural activities. This article explores how artificial intelligence is revolutionizing the design of agricultural machinery, analyzing current trends, the benefits it offers, and the challenges facing its implementation. It also proposes to examine the crucial role that artificial intelligence plays in the design of modern agricultural machinery and finally a preliminary design of a humanoid robot that transforms into a corn harvester is presented.

Keywords: Artificial intelligence; Agricultural Machines Design; Agricultural Robots

References

  1. Armijos Cevallos LO., et al. “Diseño de un robot agrícola para la recopilación de información de la enfermedad sigatoka negra en las plantaciones de banano (Doctoral dissertation, ESPOL. FIMCP)”. (2021).
  2. “Cinco maravillas que la IA hace con las maquinas agrícolas” (2024a).
  3. “Maquinas agrícolas Inteligentes” (2024b).
  4. Abuhamad G., et al. “Inteligencia artificial en el sector de maquinaria agrícola de Argentina: diagnóstico de madurez y recomendaciones de política para acelerar la adopción”. IADB: Inter-American Development Bank. United States of America (2025).
  5. Beloev I., et al. “Artificial intelligence-driven autonomous robot for precision agriculture”. Acta Technologica Agriculturae 24 (2021): 48-54.
  6. Cornejo Orosco R G., et al. “Diseño de robot agrícola para fumigación automática de malezas en terrenos llanos usando visión inteligente FASTER R-CNN en plataforma Python”. (2021).
  7. Cubero S., et al. “Robot de campo para detectar enfermedades en cultivos hortícolas mediante imágenes multiespectrales (No. COMPON-2019-agri-3473)”. (2019).
  8. Crisostomo Poma J J. “Diseño de un robot móvil de servicio para aplicaciones de fumigación del cultivo de maíz en la provincia de concepción de la región Junín”. (2020).
  9. Diezma Iglesias B and Valero Ubierna C. “Sistemas avanzados en las cosechadoras de cereal”. Tierras de Castilla y León: Agricultura 170 (2010): 6-12.
  10. “Los desafíos de diseñar maquinarias adecuadas a la agricultura digital” (2023).
  11. Fernández F. “Inteligencia Artificial y Agricultura: nuevos retos en el sector agrario”. Campo Jurídico (Online) 2 (2020): 123-139.
  12. González DS S., et al. “Integración de la mecatrónica al desarrollo de la agricultura de precisión aplicada al control mecánico de maleza”. Memorias (2015).
  13. González Gavilanes HF and Carrillo Trujillo M G. “Implementación de un prototipo de robot sembrador de papa en terrenos sin inclinación para pequeños productores (Bachelor's thesis, Escuela Superior Politécnica de Chimborazo)”. (2019).
  14. Mercado A H and López NV. “Dispositivo robótico para el control de maleza en cultivos de maíz mediante laser”. In MEMORIAS DEL SIMPOSIO.
  15. Gharakhani H., et al. “Field test and evaluation of an innovative vision-guided robotic cotton harvester”. Computers and Electronics in Agriculture 225 (2024): 109314.
  16. Han XZ., et al. “Development of a path generation and tracking algorithm for a Korean auto-guidance tillage tractor”. Journal of Biosystems Engineering1 (2013): 1-8.
  17. Huacho Chalán AR. “Desarrollo de un prototipo robótico móvil teleoperado para actividades de fumigación en terrenos sin inclinación de baja producción”. (2023).
  18. Ismail W I W and Ishak W. “Research and development of oil palm harvester robot at Universiti Putra Malaysia”. International Journal of Engineering and Technology2 (2010): 87-94.
  19. Kumar S., et al. “Design and fabrication of autonomous robot for precision agriculture”. International Journal of Mechanical and Production Engineering Research and Development 3 (2018): 385-392.
  20. Kumar P and Ashok G. “Design and fabrication of smart seed sowing robot”. Materials Today: Proceedings 39 (2021): 354-358.
  21. Kubiliute G. “La Inteligencia Artificial, poderosa herramienta para abordar los desafíos a los que se enfrenta la agricultura”. Cosecha autónoma, hacia un futuro sostenible (2023).
  22. Medina O. “Diseño de Maquinarias Industriales en el Sector Agrícola” ( 2024)
  23. Megalingam RK., et al. “Amaran: an unmanned robotic coconut tree climber and harvester”. Ieee/Asme Transactions on Mechatronics1 (2020): 288-299.
  24. Negrete JC. “Robotics in Mexican agriculture, current situation and perspectives”. International Journal of Horticulture8 (2016): 1-8.
  25. Rahman M M., et al. “Optimum harvesting area of convex and concave polygon field for path planning of robot combine harvester”. Intelligent Service Robotics 12 (2019): 167-179.
  26. Ren H., et al. “Research on an Intelligent Agricultural Machinery Unmanned Driving System”. Agriculture10 (2023): 1907.
  27. Silwal A., et al. “Design, integration, and field evaluation of a robotic apple harvester”. Journal of Field Robotics6 (2017): 1140-1159.
  28. Saheb SH and Babu G S. “Design and analysis of light weight agriculture robot”. Global Journals of Research in Engineering (2017).
  29. Shivaprasad B S., et al. “Design and implementation of seeding and fertilizing agriculture robot”. International Journal of Application or Innovation in Engineering and Management (IJAIEM)6 (2014): 251-255.
  30. Shelake S., et al. “Design and implementation of artificial intelligence powered agriculture multipurpose robot”. International Journal of Research in Engineering, Science and Management 4 (2021): 165-167.
  31. Smit P B and Ayomoh MK. “Designing a Low-Cost Automated Mobile Robot for South African Citrus Farmers”. Engineering Proceedings1 (2024): 35.
  32. Vrochidou E., et al. “An autonomous grape-harvester robot: integrated system architecture”. Electronics9 (2021): 1056.
  33. Vélez S., et al. “Agricultura 5.0: Nueva era en la detección de enfermedades combinando robots aéreos, terrestres y sensors”. Tierras: Agricultura 324 (2023): 88-91.
  34. Vásquez Vanegas JF. “Diseño conceptual de un robot móvil enfocado a la agricultura de precisión en campo abierto para la eliminación de malezas en el cultivo de palma de aceite”. (2020).
  35. Villacis Palacios A J. “Construcción de un prototipo robótico vinculado con visión artificial para la asistencia en la eliminación de maleza en cultivos de fresa”. (2022).
  36. Vrochidou E., et al. “An autonomous grape-harvester robot: integrated system architecture”. Electronics 9 (2021): 1056.
  37. Zhang Z., et al. “Development of a robot combine harvester for wheat and paddy harvesting”. IFAC Proceedings4 (2013): 45-48.

Citation

Citation: Jaime Cuauhtemoc Negrete. “Artificial Intelligence for the Design of Agricultural Machines and Preliminary Design of Maizor QK2913, a Humanoid Robot that Transforms into a Corn Harvester". Acta Scientific Agriculture 9.2 (2025): 118-122.

Copyright

Copyright: © 2025 Jaime Cuauhtemoc Negrete This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate32%
Acceptance to publication20-30 days
Impact Factor1.014

Indexed In




News and Events


  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is December 25, 2024.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of "Best Article of the Issue"

Contact US









ff

© 2024 Acta Scientific, All rights reserved.