Acta Scientific Agriculture (ASAG)(ISSN: 2581-365X)

Research Article Volume 4 Issue 2

Structural, Anatomy Characteristics and Thermal Properties of Ampelodesmos mauritanicus (Diss)

Chenah May* and Amrani Moussa

Laboratory of Soft Technology, Valorization, Physico Chemistry of Biological Materials and Biodiversity, Faculty of Science, M’Hamed Bougara University of Boumerdes, Algeria

*Corresponding Author: Chenah May, Laboratory of Soft Technology, Valorization, Physico Chemistry of Biological Materials and Biodiversity, Faculty of Science, M’Hamed Bougara University of Boumerdes, Algeria.

Received: December 30, 2019; Published: January 22, 2020



  The structure, anatomical characteristics and thermal properties of the plant ampledosmos mauriatnicus were analyzed. The analysis of mineral compounds was carried out by X-ray fluorescence (FRX). Physical properties were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction and Thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) was used to investigate the structure and morphology of sample. The results reveal the % (W/W) cellulose content of Diss is 28.13 %, hemicelluloses content is 26.26% and lignin content is 24.95 %. Analysis of extractives contents in Diss were revealed to be 12.03 %. According to XRD data, Diss showed, a crystallinity index (CI) 52.5 %. High crystallinity of cellulose induces thermal decomposition of fibers at high temperatures. These results show that this plant is rich in cellulosic fibers and that could be used as raw material in industries and paper making.

Keywords: Ampelodesmos mauritanicus; Cellulose; Hemicellulose



  1. Khalil A., et al. “Green composites from sustainable cellulose nanofibrils”. Carbohydrate Polymers 87 (2012): 963-979.
  2. Reddy MM., et al. “Biobased plastics and bionanocomposites: Current status and future opportunities”. Progress in Polymer Science 38 (2013): 1653-1689.
  3. Khan A., et al. “Nanocellulose-based composites and bioactive agents for food packaging”. Critical Reviews in Food Science and Nutrition 54 (2014): 163-174.
  4. Belgacem MN and Gandini A. “Monomers, polymers and composites from renewable resources”. Elsevier, Amsterdam (2008).
  5. Ahmadzadeh A., et al. “Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin”. Industrial Crops and Products 30 (2009): 54-58.
  6. Ali IS., et al. “Kenaffibres as reinforced for polymeric composites. A review”. International Journal of Mechanical and Materials Engineering 4 (2009): 239-248. 
  7. Thomas S and Pothan L. “Cellulose fiber reinforced polymer composites”. Old City Publishing (Philadelphia) (2009).
  8. Cordeiro ON., et al. “Chemical composition and pulping of banan pseudo-streams”. International journal crops and products 19 (2004): 147-154.
  9. Foyle T., et al. “Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw”. Bioresource Technology 98 (2007): 3026-3036.
  10. Sorek N., et al. “The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels”. BioScience 64 (2014): 192-201.
  11. Klemm D., et al. “Cellulose: Fascinating Biopolymer and Sustainable Raw Material”. 44 (2005): 3358-3393.
  12. Moon RJ., et al. “Cellulose nanomaterials review: structure, properties and nanocomposites”. Chemical Society Reviews 40 (2011): 3941-3994.
  13. Fengel D and Wegener G. “Wood chemistry, ultrastructure, Reactions”. Walter de Gruyter, Berlin and New York (1984).
  14. Zablackis E., et al. “Characterization of the Cell-Wall Polysaccharides of Arabidopsis thaliana Leaves”. Plant Physiology 107 (1995) 1129-1138.
  15. Desvaux M. “Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia”. FEMS Microbiology Review 29 (2005): 741-764.
  16. Saha BC. “Hemicellulose bioconversion”. Journal of Industrial Microbiology and Biotechnology 30 (2003): 279-291.
  17. Laureano-Perez L., et al. “Understanding factors that limit enzymatic hydrolysis of biomass: Characterization of Pretreated Corn Stover”. Applied Biochemistry and Biotechnology (2005): 121-124:1081-1099. 
  18. Pratima B. “Pretreatment of Lignocellulosic Biomass for Biofuel Production”. Springer Briefs in Green Chemistry for Sustainability, Chapter II Structure of lignocellulosic Biomass (2016): 7-9. 
  19. Saijonkari-Pahkala K. “Non-wood plants as raw material for pulp and paper”. Thesis Faculty Agricultural and Forest, University of helsinky in Finland (2001): 101.
  20. Sridach W and Suranaree. “The Environmentally Benign Pulping Process of Non-Wood”. Fibers Journal of Science and Technology 17 (2010): 105-123.
  21. Plazonić I., et al. “Chemical composition of straw as an alternative material to wood raw material in fiber isolation”. Drvna Industrija 67 (2016) 119-125. 
  22. Paiva MC., et al. “Alfa fibres: Mechanical, morphological and interfacial characterization”. Composites Science and Technology 67 (2006): 1132-1138.
  23. Akchiche O and Messaoud BK. “Esparto grass (Stipa tenacissimaL), raw material of papermaking”. First part. Kimiyarastitelnovocirya, 4 (2007): 25-30.N° 4.С. 25-30.
  24. Merzoud M. “Elaboration et caractérisation d’un matériau composite à base de fibres de diss dans la fabrication de la maçonnerie”. Thèse de doctorat d’Etat, Université Badji Mokhtar, Algérie (2007).
  25. Bourahli MEH. Caractérisation d’un composite verre/époxy. Thèse de magistère. Université Ferhat Abbas, Sétif, Algérie (2014).
  26. Sellami A. Elaboration des composites cimentaires à base de fibres végétales locales (le diss): Caractérisation, Durabilité et Application au cas de la maçonnerie, Thèse de magistère. Université Badji Mokhtar-Annaba, Algérie (2015).
  27. Blasi CD., et al. “Product distribution from pyrolysis of wood and agricultural residues”. Industrial Engineering Chemistry Research 38 (1999): 2216-2224.
  28. Sluiter A., et al. “Determination of structural carbohydrates and lignin in biomass”. Laboratory analytical procedure 1617 (2008): 1-16.
  29. Ouensanga A. “Variation of fiber composition in sugar cane stalks”. Journal of the society of wood science and technology 21.2 (1989): 105-111.
  30. Segal L., et al. “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer”. Textile Research Journal 29 (1959): 786-794.
  31. Mcmanus WR., et al. “The physical distribution of mineral material on forage plant cell walls”. Australian Journal of Agricultural Research 28 (1997): 651-662.
  32. Hurter AM. “Utilization of annual plants and agricultural residues for the production of pulp and paper”. Proceedings of TAPPI pulping conference. New Orleans, LA, USA Book 1 (1988): 139-160.
  33. Poletto M., et al. “Native Cellulose: Structure, Characterization and Thermal Properties”. Materials 7 (2014): 6105-6119.
  34. Augustine OA., et al. “Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass”. American Journal of Engineering Research (AJER) 4 (2015): 14-19.
  35. Yokoi H., et al. “Rapid characterization of wood extractives in wood by thermal desorption-gas chromatography in the presence of tetramethylammonium acetate”. Journal of Analytical and Applied Pyrolysis 67 (2003) 191-200.
  36. Ishida Y., et al. “Direct analysis of phenolic extractives in wood by thermochemolysis-gas chromatography in the presence of tetra butyl ammonium hydroxide”. Journal of Analytical and Applied Pyrolysis 78 (2007): 200-206.
  37. Wada M and Okano T. “Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments”. Cellulose 8 (2001): 183-188.
  38. Mészáros E., et al. “TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia”. Journal of Analytical and Applied Pyrolysis 79 (2007): 61-70. 
  39. Chen H., et al. “Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis”. Carbohydrate Polymers 82 (2010): 772-778.
  40. Kim UJ., et al. “Thermal decomposition of native cellulose: Influence on crystallite size”. Polymer Degradation and Stability 95 (2010): 778-781. 
  41. Åkerholm M., et al. “Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy”. Carbohydrate Research 339 (2004): 569-578.
  42. Mazlan MAF., et al. “Characterizations of Bio-char from Fast Pyrolysis of Meranti Wood Sawdust”. Journal of Physics: Conference Series 622 (2015): 012054.
  43. John MJ and Thomas S. “Biofibres and biocomposites”. Carbohydrate Polymers 71 (2008): 343-364.
  44. Yang H., et al. “In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, cellulose and lignin”. Energy Fuels 20 (2006): 388-393. 
  45. Bridgwater AV. “Review of fast pyrolysis of biomass and product upgrading”. Biomass and Bioenergy 38 (2012): 68-91.
  46. Dhanalakshmi S., et al. “Physical Characterization of Natural Lignocellulosic Single Areca Fiber”. Ciência and Tecnologia dos Materiais 27 (2015): 121-135.


Citation: Chenah May and Amrani Moussa. “Structural, Anatomy Characteristics and Thermal Properties of Ampelodesmos mauritanicus (Diss)". Acta Scientific Agriculture 4.2 (2020): 92-97.

Member In

News and Events

  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is August 20, 2020.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of “Best Article of the Issue”.
  • Welcoming Article Submission
    Acta Scientific delightfully welcomes active researchers for submission of articles towards the upcoming issue of respective journals.
  • Contact US