x
Sara Ali*
Department of Zoology, Ain Shams University, Egypt
*Corresponding Author: Sara Ali, Department of Zoology, Ain Shams University, Egypt.
Received: July 01, 2020; Published: July 18, 2020
Coronaviruses (CoV) are a large family of viruses that cause illness that ranges from the common cold to more severe diseases. For instance, Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). Ultimately, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for COVID-19, a global pandemic with disastrous ramifications for populations and healthcare systems on every side of world [1]. Since two decades, there have been outbreaks of severe, and even fatal in sometimes, resulted from human pathogenic CoVs. These CoV strains had originated in bats and were transmitted to humans via an intermediate host [1-3]. These strains displayed a stronger and quickly virulence transports from human to human. The CoVe-infection could usually produce mild symptoms, for particular individuals, responses were more severe in other cases could reach to death due to alveolar damage which finally lead to respiratory failure. During the current COVID 19 pandemic, it has been noticed that there is a number of patients who hospitalized by COVID-19 have high blood pressure as well as cardiovascular diseases (CVD). This number cannot be neglected, which could indicate to a somehow correlation between COVID 19 severity and these diseases. Recently, in an interview with a medical journal, the U.S. government’s top infectious disease expert Anthony Fauci cited a report showing similarly high rates of hypertension among COVID-19 patients who died in Italy and suggested the medicines such as angiotensin‐converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) may act as an accelerant for the virus [4]. Contradictory, from animal studies, ARBs and ACEi have a potential protective effect of ARBs against lung injury in mice infected with SARS-CoV. Based on these findings and the similarities between SARS-CoV and the current SARS-CoV-2, it is thought that these drugs have the same potential protective effect against the severity of COVID 19. The question is, do ACEi/ARBs have a biphasic impact, do, is it regarded as a double-edged sword? Therefore, there is a concern that has been raised regarding whether ARBs and ACEIs would increase the morbidity and mortality of COVID-19 [5].
Keywords: ACE Inhibitors/Blockers; SARS-COV-2; Cardiovascular Diseases; Diabetes Mellitus and COVID 19
Citation: Sara Ali. “The Potential Double-Faced Interactions of ACE Inhibitors/Blockers with SARS-COV-2 in Cardiovascular Diseases and Diabetes Mellitus Patients Who Developed COVID 19". Acta Scientific Pharmaceutical Sciences 4.8 (2020): 31-39.
Copyright: © 2020 Sara Ali. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.