Renat Nurmukhametov*
Head of Spinal Department at Scientific Clinical Center #2 of Russian scientific center of surgery named after B.V. Petrovskiy Head of spinal clinical base at Neurosurgery department RUDN, Russia
*Corresponding Author: Renat Nurmukhametov, Head of Spinal Department at Scientific Clinical Center #2 of Russian scientific center of surgery named after B.V. Petrovskiy Head of spinal clinical base at Neurosurgery department RUDN, Russia.
Received: May 18, 2022; Published: September 07, 2022
This publication discusses aspects of the possibilities of improving technologies and materials for transforaminal spinal fusion in patients with degenerative diseases of the spine. The technology of surgical treatment of patients with degenerative diseases of the spine's intervertebral discs using biologically integrated titanium cages of unique design based on computer 3D modeling has been proposed and experimentally tested.
Objective: To compare the radiological and clinical results of posterior interbody fusion of the lumbar spine using a porous 3D titanium alloy cage and a titanium-coated PEEK cage. Study characteristics: a randomized, prospective, interventional, double-blind, single-blind, single-center, post-marketing study conducted to assess the difference infusion rate and the difference compared to PEEK cages. The experiment involved 80 patients, 40 in the Study Group and 40 in the Control Group with degenerative-dystrophic diseases of the lumbar spine, who underwent surgery using the technique of posterior transforaminal fusion with transpedicular fixation at the operating levels. Research methods: assessment by computed tomography (CT), Oswestry questionnaire (every 3, 6 months), and evaluation by visual analog scales (VAS), if necessary - clinical neurological examination. Results of the study: patients of two groups show comparable late (from 6 months - 1 year after surgery) results of fusion and the degree of cage subsidence. In the Study Group: migrations, screw instability - 0; the number of reoperations for adjacent segment syndrome - 2; back pain at a minimal level. According to CT data from 3-6 months after the operation - the screws are stable, the incisors of the cages are cut into the endplates, sclerosis of the endplates around the cage. In the control group: migration of the cage into the spinal canal with screw instability - 1; instability of screws without migration, but with the formation of pseudoarthrosis - 1; adjacent segment syndrome - 2; a number of revisions - 4. Conclusions: the effectiveness of the technology for treating patients with degenerative diseases of the spine/or instability of the spinal motion segments with elements of neural compression using biologically integrated titanium cages of unique design based on computer 3D has been confirmed, which makes it possible to use a new method of spinal fusion in practice, allowing restore the local sagittal balance of the spinal motion segment, reduce the incidence of pseudarthrosis and, as a consequence, the frequency of revision surgery.
Keywords: Degenerative Diseases of the Spine; Titanium Cages; Transforaminal Fusion; Custom Design Cages; Biologically Integrable Titanium Cages; Custom Design of Computer 3D Modeling
Citation: Renat Nurmukhametov. “Application of Biologically Integrated Titanium Cages of Unique Design for Transforaminal Fusion in Patients with Degenerative Diseases of the Spine". Acta Scientific Orthopaedics 5.10 (2022): 03-10.
Copyright: © 2022 Renat Nurmukhametov. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.