Acta Scientific Neurology (ASNE) (ISSN: 2582-1121)

Review Article Volume 3 Issue 1

Neurological Diseases Associated with Brain Iron Accumulation

Rajib Dutta1* and Swatilekha Roy Sarkar2#

1MD, Neurology, India

2MDS, Consultant Orthodontist, India

*Corresponding Author: Rajib Dutta, MD, Neurology, India. E-mail:

Received: December 27, 2019; Published: December 31, 2019



  Brain iron plays a very important role in maintaining normal physiological functioning and homeostasis. However, excess iron or dysregulated iron metabolism is a potent source of free radical formation and oxidative damage to neuronal and other brain cells. Abnormal high brain iron levels are associated with many neurological diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Neurodegeneration with brain iron accumulation, Multiple sclerosis, Aceruloplasminaemia (CPM). etc. Here in this review we will focus on brain iron transport, dysregulated metabolism and the disease it causes.

Keywords: Brain Iron; Neurodegeneration; Neurodegenerative Mechanisms; Neuroinflammation; Mitochondria; Neuron; Cells; Iron Metabolism; Blood Brain Barrier; Blood CSF Barrier; Influx; Efflux



  1. Lane DJR., et al. “Iron and Alzheimer’s Disease: An Update on Emerging Mechanisms”. Journal of Alzheimer’s Disease 64.1 (2018): S379-S395. 
  2. Ashraf A., et al. “The aging of iron man”. Frontiers in Aging Neuroscience 10 (2018): 65.
  3. Chang YZ. “Brain Iron Metabolism and CNS Diseases”. Advances in Experimental Medicine and Biology (2019). 
  4. Belaidi AA and Bush AI. “Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics”. Journal of Neurochemistry 139 (2016): 179-197.
  5. Duck KA., et al. “A role for sex and a common HFE gene variant in brain iron uptake”. Journal of Cerebral Blood Flow and Metabolism 38 (2018): 540-548.
  6. Mccarthy RC and Kosman DJ. “Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy”. Cellular and Molecular Life Sciences 72 (2015): 709-727.
  7. Rouault TA., et al. “Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins”. Metabolic Brain Disease 24 (2009): 673-684.
  8. Chiou B., et al. “Endothelial cells are critical regulators of iron transport in a modelof the human blood-brain barrier”. Journal of Cerebral Blood Flow and Metabolism (2018).
  9. Rudisill SS., et al. “Iron deficiency reduces synapse formation in the drosophila clock circuit”. Biological Trace Element Research 189 (2019): 241-250.
  10. Khan AI., et al. “Iron transport kinetics through blood-brain barrier endothelial cells”. Biochimica et Biophysica Acta 1862 (2018):1168-1179.
  11. Leitner DF and Connor JR. “Functional roles of transferrin in the brain”. Biochimica et Biophysica Acta 1820 (2012): 393-402.
  12. Qian ZM and Shen X. “Brain iron transport and neurodegeneration”. Trends in Molecular Medicine 7 (2001): 103-108.
  13. Burkhart A., et al. “Expression of iron-related proteins at the neurovascular unit supports reduction and reoxidation of iron for transport through the blood-brain barrier”. Molecular Neurobiology 53 (2016): 7237-7253.
  14. Chiou B., et al. “Semaphorin 4A and H-ferritin utilize Tim-1 on human oligodendrocytes: a novel neuro-immune axis”. Glia 66 (2018): 1317-1330.
  15. Fishman J., et al. “Receptor mediated transcytosis of transferrin across the blood-brain barrier”. Journal of Neuroscience Research 18 (1987): 299-304.
  16. Leveugle B., et al. “Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases”. Acta Neuropathologica 91 (1996): 566-572.
  17. Moroo I., et al. “Identification of a novel route of iron transcytosis across the mammalian blood-brain barrier”. Microcirculation 10 (2003): 457-462.
  18. Gunshin H., et al. “Cloning and characterization of a mammalian proton-coupled metal-ion transporter”. Nature 388 (1997): 482-488.
  19. Vargas JD., et al. “Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases”. Biochimica et Biophysica Acta 1651 (2003): 116-123.
  20. Wang X., et al. “Efflux of iron from the cerebrospinal fluid to the blood at the blood-CSF barrier: effect of manganese exposure”. Experimental Biology and Medicine (Maywood) 233 (2008b): 1561-1571.
  21. Unger EL., et al. “Diurnal cycle influences peripheral and brain iron levels in mice”. Journal of Applied Physiology 106 (2009): 187-193.
  22. Boland B., et al. “Promoting theclearance of neurotoxic proteins in neurodegenerative disorders of ageing”. Nature Reviews Drug Discovery 17 (2018): 660-688.
  23. Trevaskis NL., et al. “From sewer to savior targeting the lymphatic system to promote drug exposure and activity”. Nature Reviews Drug Discovery 14 (2015): 781-803.
  24. Moos T. “Brain iron homeostasis”. Danish Medical Bulletin 49 (2002): 279-301.
  25. Moos T. “Increased accumulation of transferrin by motor neurons of the mouse mutant progressive motor neuronopathy (pmn/pmn)”. Journal of Neurocytology 24 (1995): 389-398.
  26. Knutson MD. “Non-transferrin-bound iron transporters”. Free Radical Biology and Medicine 133 (2019): 101-111.
  27. Urrutia P., et al. “Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells”. Journal of Neurochemistry 126 (2013): 541-549.
  28. Tripathi AK., et al. “Prion protein functions as a ferrireductase partner for ZIP14 and DMT1”. Free Radical Biology and Medicine 84 (2015): 322-330.
  29. Xu M., et al. “Differential regulation of estrogen in iron metabolism in astrocytes and neurons”. Journal of Cellular Physiology 234 (2019): 4232-4242.
  30. Ji C., et al. “The ferroxidase hephaestin but not amyloid precursor protein is required for ferroportin-supported iron efflux in primary hippocampal neurons”. Cellular and Molecular Neurobiology 38 (2018): 941-954.
  31. Jeong SY and David S. “Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice”. Journal of Neuroscience 26 (2006): 9810-9819.
  32. Zarruk JG., et al. “Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation”. Neurobiology of Disease 81 (2015): 93-107.
  33. Helgudottir SS., et al. “Hepcidin mediates transcriptional changes in ferroportin mRNA in differentiated neuronal-like PC12 cells subjected to iron challenge”. Molecular Neurobiology 56 (2019): 2362-2374.
  34. Yanatori I., et al. “Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2”. Journal of Biological Chemistry 291 (2016): 17303-17318.
  35. Loeffler DA., et al. “Ceruloplasmin immunoreactivity in neurodegenerative disorders”. Free Radical Research 35 (2001): 111-118.
  36. Goodman L. “Alzheimer’s disease; A clinico-pathologic analysis of twenty- three cases with a theory on pathogenesis”. The Journal of Nervous and Mental Disease 118 (1953): 97-130.
  37. Smith MA., et al. “Iron accumulation in Alzheimer disease is a source of redox-generated free radicals”. Proceedings of the National Academy of Sciences of the United States of America 94 (1997): 9866-9868.
  38. Collingwood JF., et al. “In situ characterization and mapping of iron compounds in Alzheimer’sdisease tissue”. Journal of Alzheimer's Disease 7 (2005): 267-272.
  39. Bartzokis G and Tishler TA. “MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’sdisease”. Cellular and Molecular Biology 46 (2000): 821-833.
  40. Lei P., et al. “Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export”. Nature Medicine 18 (2012): 291-295.
  41. Lei P., et al. “Tau protein: relevance to Parkinson’s disease”. The International Journal of Biochemistry and Cell Biology 42 (2010):1775-1778.
  42. Islam K and Levy E. “Carboxyl-terminal fragments of beta-amyloid precursor protein bind to microtubules and the associated protein tau”. The American Journal of Pathology 151 (1997): 265-271.
  43. Hirsch EC., et al. “Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis”. Journal of Neurochemistry 56 (1991): 446-451. 
  44. Jellinger K., et al. “Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases”. Journal of Neural Transmission - Parkinson s Disease and Dementia Section 2 (1990): 327-340. 
  45. Li WJ., et al. “Dose- and time-dependent alpha synuclein aggregation induced by ferric iron in SK-N-SH cells”. Neuroscience Bulletin 26 (2010): 205-210. 
  46. Febbraro F., et al. “Alpha-synuclein expression is modulated at the translational level by iron”. Neuro Report 23 (2012): 576-580. 
  47. Rocha EM., et al. “Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease”. Neurobiology of Disease 109 (2017): 249-257. 
  48. Wakabayashi K., et al. “The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates”. Neuropathology 27 (2007): 494-506. 
  49. Salazar J., et al. “Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease”. Proceedings of the National Academy of Sciences of the United States of America 105 (2008): 18578-18583. 
  50. Liu C., et al. “S-nitrosylation of divalent metal transporter 1 enhances iron uptake to mediate loss of dopaminergic neurons and motoric deficit”. The Journal of Neuroscience 38 (2018): 8364-8377.
  51. Bonn D. “Pumping iron in Parkinson’s disease”. Lancet 347 (1996): 1614.
  52. Fisher J., et al. “Ferritin: a novel mechanism for delivery of iron to the brain and other organs”. American Journal of Physiology 293 (2007): C641-C649.
  53. Iancu TC. “Ultrastructural aspects of iron storage, transport and metabolism”. Journal of Neural Transmission (Vienna) 118 (2011): 329-335.
  54. Xu H., et al. “Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinson’s disease”. FASEB Journal 13 (2018).
  55. Lumsden AL., et al. “Huntingtin-deficient zebrafish exhibit defects in iron utilization and development”. Human Molecular Genetics 16.16 (2007): 1905-1920.
  56. Agrawal S., et al. “Brain mitochondrial iron accumulates in Huntington’s disease, mediates mitochondrial dysfunction, and can be removed pharmacologically”. Free Radical Biology and Medicine 120 (2018): 317-329.
  57. Domínguez JFD., et al. “Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study”. Journal of Neurology, Neurosurgery, and Psychiatry 87.5 (2016): 545-549.
  58. Van Bergen JMG., et al. “Quantitative susceptibility mapping suggests altered brain iron in premanifest huntington disease”. American Journal of Neuroradiology 37.5 (2016): 789-796.
  59. Fox JH., et al. “Mechanisms of copper ion mediated Huntington’s disease progression”. PLoS One 2.3 (2007): e334.
  60. Hogarth P. “Neurodegeneration with brain iron accumulation: diagnosis and management”. Journal of Movement Disorders 8 (2015): 1-13. 
  61. Zhou B., et al. “A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome”. Nature Genetics 28 (2001): 345-349. 
  62. Hayflick SJ and Hogarth P. “As iron goes, so goes disease?” Haematologica 96 (2011): 1571-1572.
  63. Haack TB., et al. “Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA”. American Journal of Human Genetics 91 (2012): 1144-1149.
  64. Saitsu H., et al. “De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood”. Nature Genetics 45 (2013): 445-449.
  65. Hametner S., et al. “Iron and neurodegeneration in the multiple sclerosis brain”. Annals of Neurology 74 (2013): 848-861.
  66. Haider L., et al. “Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron”. Journal of Neurology, Neurosurgery, and Psychiatry (2014).
  67. Walsh A., et al. “Multiple sclerosis: validation of MR imaging for quantification and detection of iron”. Radiology 267 (2013): 531-542.
  68. Zheng W., et al. “Measuring iron in the brain using quantitative susceptibility mapping and X‑ ray fluorescence imaging”. Neuroimage 78 (2013): 68-74.
  69. Yao B., et al. “Chronic multiple sclerosis lesions: characterization with high‑ strength MR imaging”. Radiology 262 (2012): 206-215.
  70. Bagnato F., et al. “Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla”. Brain 134 (2011): 3602-3615.
  71. Mahad D., et al. “Mitochondrial defects in acute multiple sclerosis lesions”. Brain 131 (2008): 1722-1735.
  72. Trapp BD and Stys PK. “Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis”. The Lancet Neurology 8 (2009): 280-291.
  73. Eaton JW and Qian M. “Molecular bases of cellular iron toxicity”. Free Radical Biology and Medicine 32 (2002): 833-840.
  74. Cui L., et al. “Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis”. The American Journal of Pathology 183 (2013): 516-525.
  75. Hametner S., et al. “Iron and neurodegeneration in the multiple sclerosis brain”. Annals of Neurology 74 (2013): 848-861.
  76. Harris ZL., et al. “Aceruloplasminemia:molecular characterization of this disorder of iron metabolism”. Proceedings of the National Academy of Sciences of the United States of America 92 (1995): 2539-2543.
  77. Miyajima H., et al. “Aceruloplasminemia, an inherited disorder of iron metabolism”. Biometals 16 (2003): 205-213.
  78. Di Patti MC., et al. “Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia”. Journal of Biological Chemistry 284 (2009): 4545-4554.
  79. Kono S., et al. “Cys-881 is essential for the traffickingand secretion of truncated mutant ceruloplasmin in aceruloplasminemia”. Journal of Hepatology 47 (2007): 844-850.
  80. Kono S., et al. “Biological effects of mutant ceruloplasmin on hepcidin-mediated internalization of ferroportin”. Biochimica et Biophysica Acta 1802 (2010): 968-975.
  81. Curtis AR., et al. “Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease”. Nature Genetics 28 (2001): 350-354.
  82. Barbeito AG., et al. “Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene”. Journal of Neurochemistry 109 (2009): 1067-1078.
  83. Vidal R., et al. “Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice”. Journal of Neurochemistry 28 (2008): 60-67.
  84. Cozzi A., et al. “Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy”. Neurobiology of Disease 37 (2010): 77-85.
  85. Sanchez-Casis G., et al. “Pathology of the heart in Friedreich’s ataxia:review of the literature and report of one case”. The Canadian Journal of Neurological Sciences. Le Journal Canadien des Sciences Neurologiques 3 (1976): 349-354.
  86. Rotig A., et al. “Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia”. Nature Genetics 17 (1997): 215-217.
  87. Puccio H., et al. “Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits”. Nature Genetics 27 (2001): 181-186.
  88. Garcia-Yebenes I., et al. “Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion”. Neurochemistry International 61 (2012): 1364-1369.
  89. Lipscomb DC., et al. “Low molecular weight iron in cerebral ischemic acidosis in vivo”. Stroke 29 (1998): 487-492.
  90. Selim MH and Ratan RR. “The role of iron neurotoxicity in ischemic stroke”. Ageing Research Reviews 3 (2004): 345-353.
  91. Hua Y., et al. “Brain injury after intracerebral hemorrhage: the role of thrombin and iron”. Stroke 38 (2007): 759-762.
  92. Wu H., et al. “Iron toxicity in mice with collagenase-induced intracerebral haemorrhage”. Journal of Cerebral Blood Flow and Metabolism 31 (2011): 1243-1250.
  93. Garton T., et al. “Brain iron overload following intracranial haemorrhage”. Stroke and Vascular Neurology 1 (2016): 172-184.
  94. Veyrat-Durebex C., et al. “Iron metabolism disturbance in a French cohort of ALS patients”. BioMed Research International (2014): 485723.
  95. Yu J., et al. “Serum ferritin is a candidate biomarker of disease aggravation in amyotrophic lateral sclerosis”. Biomedical Reports 9 (2018): 333-338.
  96. Kokic AN., et al. “Biotransformation of nitric oxide in the cerebrospinal fluid of amyotrophic lateral sclerosis patients”. Redox Report 10 (2005): 265-270.
  97. Hozumi I., et al. “Patterns of levels of biological metals in CSF differ among neurodegenerative diseases”. Journal of the Neurological Sciences 303 (2011): 95-99.
  98. Ignjatovic A., et al. “Inappropriately chelated iron in the cerebrospinal fluid of amyotrophic lateral sclerosis patients”. Amyotrophic Lateral Sclerosis 13 (2012): 357-362.
  99. Yasui M., et al. “Concentrations of zinc and iron in the brains of Guamanian patients with amyotrophic lateral sclerosis and parkinsonism-dementia”. Neurotoxicology 14 (1993): 445-450.
  100. Ince PG., et al. “Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease”. Neuroscience Letters 182 (1994): 87-90.
  101. Kasarskis EJ., et al. “Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study”. Journal of the Neurological Sciences 130 (1995): 203-208.
  102. Markesbery WR., et al. “Neutron activation analysis of trace elements in motor neuron disease spinal cord”. Neurodegeneration 4 (1995): 383-390.
  103. Qian ZM and Wang Q. “Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders”. Brain Research Reviews 27 (1998):257-267.
  104. Chen L., et al. “Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis”. Journal of Biological Chemistry 290 (2015): 28097-28106. 
  105. Puy V., et al. “Predominantrole of microglia in brain iron retention in Sanfilippo syndrome, a pediatric neurodegenerative disease”. Glia 66 (2018): 1709-1723.


Citation: Rajib Dutta and Swatilekha Roy Sarkar. “Neurological Diseases Associated with Brain Iron Accumulation".Acta Scientific Neurology 3.1 (2020): 53-61.


Acceptance rate32%
Acceptance to publication20-30 days

Indexed In

News and Events

  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is May 30, 2024.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of "Best Article of the Issue"
  • Welcoming Article Submission
    Acta Scientific delightfully welcomes active researchers for submission of articles towards the upcoming issue of respective journals.

Contact US