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Neurological Diseases Associated with Brain Iron Accumulation

Review Article

Brain iron plays a very important role in maintaining normal physiological functioning and homeostasis. However, excess iron or 
dysregulated iron metabolism is a potent source of free radical formation and oxidative damage to neuronal and other brain cells. 
Abnormal high brain iron levels are associated with many neurological diseases like Alzheimer’s disease, Parkinson’s disease, Hun-
tington’s disease, Neurodegeneration with brain iron accumulation, Multiple sclerosis, Aceruloplasminaemia (CPM) etc. Here in this 
review we will focus on brain iron transport, dysregulated metabolism and the disease it causes.
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Iron is the most abundant metal in the brain [1,2]. It is respon-
sible for many cellular activities like mitochondrial respiration, 
synthesis of myelin and even synthesis of neurotransmitter and 
its metabolism. Iron in brain plays a crucial physiological role in 
maintaining homeostasis [3,4]. Brain iron status is consistently 
maintained and tightly regulated at the level of the blood brain 
barrier (BBB)[5] and blood cerebrospinal fluid barrier(BCSFB) 
[6,7]. So it is very important for us to understand the impact of 
iron deficiency in development of brain and excess causing disea-
ses which are mostly degenerative in nature [8]. May be detailed 
understanding the role of BBB and mechanism of transport of iron 
across it is vital.

Introduction

The normal structure and function of the BBB is essential for 
brain iron homeostasis because the endothelial cells of the BBB are 
a regulatory site for brain iron uptake [9]. BBB endothelial cells can 
also regulate the two possible iron transport pathways[transferrin-
bound iron (Tf-Fe) and non-transferrin-bound iron (NTBI)] by con-
trolling receptor expression, internalization of transferrin receptor 
1(TfR1) complexes, and acidification inside cell endosomes [10]. 
The mechanism involves two transmembrane steps: iron uptake 
into the microvascular endothelial cells at the luminal membrane 
(apical, on the blood side), followed by iron efflux into the brain 
interstitium at the abluminal membrane (basal, brain side) [6]. The 
accumulated evidence suggests that the Tf/TfR1 pathway is the 
major route or primary pathway for iron transport across the lu-
minal membrane of the capillary endothelium [11] and that iron, 
possibly in the form of Fe2+, crosses the abluminal membrane and 
enters the brain parenchyma [12,13].

Apart from this two pathway there may be some other ways of 
transportation of iron in brain a)H-ferritin-mediated delivery of 
iron into the brain [14] b) transcytosis of Tf/TfR1 complexes throu-
gh brain endothelial cells, leading to the release of iron from the 
abluminal side into the brain [15] c) lactoferrin-lactoferrin recep-
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Diseased caused by dysregulated iron metabolism 
Alzheimer’s disease (AD)

Elevated iron in AD brains was first reported in 1953 [36] and 
shown to be associated with senile plaques(SPs). Iron is enriched 
in both NFTs [37] and SPs [36]. Iron accumulation occurs in AD 
cortex, but not cerebellum. The iron storage protein ferritin binds 
most iron within the brain [38], and this protein increases with age 
and in AD [39]. APP-knock out mice exhibit iron accumulation in 
brain and peripheral tissues, and loss of APP ferroxidase activity in 
AD brain is coincident with iron retention in the tissue. Iron-export 
capability of APP requires tau [40].Tau has been implicated in axo-
nal transport [41] and binds APP [42]. Loss of tau in mice causes 
age-dependent iron accumulation [40]. Genetic factors could also 
increase the susceptibility to iron burden in AD like Tf variant C2, 
Mutations in the hemochromatosis gene(H63D and C82Y).

tor (Lf/LfR) [16] d) secreted melanotransferrin (p97)-glycosylp-
hosphatidylinositol (GPI)-anchored p97(sP97/GPI-P97) [17].

Blood–Cerebrospinal Fluid Barrier (BCSFB) also separates 
systemic circulation from the brain parenchyma physically [6]. 
Tf/TfR1/DMT1 pathway may be of importance for iron transport 
across the BCSFB, and also that the export of iron from the cho-
roid epithelium to the cerebrospinal fluid (CSF) is mediated by the 
Fpn1/CP or Fpn1/Heph pathways [7]. Once iron enters the inter-
stitial fluid or ventricular CSF, it binds to apo-Tf, synthesized locally 
by the choroid plexus [11]. SDR2 is the only known ferric reducta-
se expressed in the choroid plexus and that DMT1 is also present in 
the choroid plexus it is possible that iron reduction by this protein 
followed by DMT1-mediated absorption might be an alternative 
mechanism for iron transport across the BCSFB [18,19]. It is pos-
sible that the BCSFB is used more for iron removal from the brain 
than iron transport into the brain [20]. There is a diurnal variation 
of iron content in the ventral midbrain supporting the existence of 
mechanisms for iron export from the brain to the systemic com-
partment [21]. It has been suggested that the glymphatic system 
in the brain [22,23] may be one of the routes by which transition 
metals including iron are transported and cleared from the brain 
via convective bulk flow of interstitial fluid, possibly mediated by 
astrocytic end-feet-expressed aquaporin-4 (Aqp4) water channels 
[2]. Iron transport into the brain bypassing the brain barriers has 
also been suggested [24]. The circumventricular organs that recei-
ve a plethora of neuronal projections, mainly from hypothalamic 
nuclei, have been suggested to play a role in iron transport in the 
developing brain. Some motor neurons that project to peripheral 
organs devoid of a blood barrier express TfR1 and show retrogra-
de axonal transport of iron into the brain [25].

Iron transport within the brain comprises of a) Tf-Fe and NTBI 
transport forms [11,24,26] b)uptake by neurons [27,28] c)uptake 
by oligodendrocytes [12] d) uptake by astrocytes [29] e) uptake by 
microglia [11] f) export from neurons [30], astrocytes [31], oligo-
dendrocytes and microglia [32]. Fpn1 is the only known cellular 
iron expressed in neurons, astrocytes, oligodendrocytes, and mi-
croglia [32]. Transcriptional changes in Fpn1 mRNA were found 
to be mediated by hepcidin in differentiated neuronal-like PC12 
cells subjected to iron challenge [33] and iron export through Fpn1 
is modulated by the iron chaperone poly(rC)-binding protein 2 
(PCBP2) [34]. CP, a critical ferroxidase, has been found in neurons 
and astrocytes [35], while another ferroxidase Heph is expressed 
in neurons [30], oligodendrocytes and microglia [32]. Iron efflux 
from the neuron is mediated by the Fpn1/CP and/or Fpn1/Heph 
pathways, from astrocytes by Fpn1/CP, and from oligodendrocytes 
and microglia by the Fpn1/Heph route.

Parkinson’s disease(PD)
Several studies reported that iron deposition was increased in 

the substantia nigra (SN) according to the severity of the disease 
in PD patients [43]. In PD brain, histology studies showed that iron 
accumulate in neurons and glia in SN [44]. Furthermore, there are 
reports that a dysfunction in the IRP-IRE system that results in iron 
accumulation gave rise to alpha synuclein(a-Syn) induced toxicity 
[45,46], that led to pathogenesis in PD [47]. Similarly, in almost 
all PD patient brains the Lewy bodies contained aggregated a-Syn 
[48]. Cellular iron accumulation in PD brain may be caused by ele-
vated influx or decreased efflux. Inflammation could contribute to 
iron accumulation by either increasing DMT1 uptake activity or TfR 
transport activity. In a mouse model, DMT1 activity was increased 
to mediate the iron uptake [49], and this increase may be due to 
direct S-nitrosylation of DMT1 [50]. In addition, the presence of LfR 
on neurons and the increased expression of LfR on iron-induced 
degenerative dopaminergic neurons in PD which may imply that an 
Lf/LfR-mediated pathway also may be involved iniron (Lf-Fe) upta-
ke by neurons [51]. Ferritin can hold large amount of iron as com-
pared to Tf and if this physiological pathway gets supersaturated 
with iron can lead to accumulation and nigral pathology [52,53]. 
The reduced expression of Fpn1 has also been connected with the 
activation of N-methyl-D-aspartate (NMDA) receptor (NR)-induced 
iron accumulation and neurodegeneration in dopamine (DA) neu-
rons in Parkinson’s disease [54].

Huntington’s disease(HD)
Impairment in intracellular iron levels and energy metabolism 

are both features of HD pathogenesis as HTT has been reported to 
mediate endocytosed Fe(II) required for oxidative energy produc-
tion [55,56]. Magnetic resonance imaging(MRI) studies suggest 
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changes in the metabolism of brain iron during early HD [57,58]. 
Post-mortem studies revealed increased levels of Fe(II) in the 
brains of HD individuals as compared to age-matched controls 
[59].

Neurodegeneration with brain iron accumulation (NBIA)

Neurodegeneration with brain iron accumulation comprises a 
number of pediatric and adult neurological diseases characterized 
by parkinsonism, dementia, and excessive iron accumulation in 
the basal ganglia [60]. Distinct genetic causes have been descri-
bed within this disease spectrum yet no direct link between ne-
urodegeneration and iron accumulation is proven. Mutations in 
PANK2, a gene implicated in coenzyme A biosynthesis, synthesis of 
lipids and citric acid cycle [61], results in panthoten kinase-asso-
ciated neurodegeneration (PKAN).Though this mutation may not 
affect iron homeostasis directly, subsequent iron accumulation 
suggests that mitochondrial dysfunction may trigger iron dysho-
meostasis. Although NBIA disorders are clinically characterized 
by the hallmark deposition of iron in the brain, for the majority 
of these disorders, this feature is a secondary consequence of the 
primary disease mechanism [62]. Detection of de novo mutations 
in WDR45—which encodes WD repeat domain 45, a β-propeller 
scaffolding protein with a presumed function in autophagy—in 
patients with β- propeller protein–associated neurodegeneration 
(BPAN) provides evidence of the association of defective autopha-
gy with NBIA [63,64].

Multiple sclerosis (MS)

Iron content is elevated in deep grey matter structures and in the 
vicinity of lesions whereas it is reduced in the normal-appearing 
white matter (NAWM),and the extent of iron depletion correlates 
with disease duration. Furthermore, iron content is low in remyeli-
nated plaques, suggesting that dynamic shuttling of iron continues 
throughout the MS disease process [65]. Elevated iron content has 
been detected using susceptibility MRI in deep grey matter struc-
tures, and is associated with increased disability and grey matter 
atrophy. In support of these MRI results, neuropathology of brain 
autopsy revealed substantial degeneration of deep grey matter 
structures, which corresponds with iron accumulation and oxida-
tive damage [66]. Comparing measures from the same individual 
before and after death, changes indicative of iron accumulation 
detected by susceptibility MRI have been shown to correlate with 
increased iron content revealed by postmortem histopathology 
[67] or X-ray fluorescence [68]. In the vicinity of lesions, suscep-
tibility MRI has revealed in vivo changes that are suggestive of 
iron deposition in areas that demonstrate myelin loss, focal iron 

deposits or both at autopsy [69,70]. Patients with MS show eviden-
ce of widespread mitochondrial damage [71,72], and the consequ-
ent increase in production of reactive oxygen species can promote 
iron-mediated oxidative damage that leads to progressive genomic 
damage and further impairment of mitochondrial function [73]. 
Oligodendrocyte progenitor cells (OPCs), which are implicated in 
remyelination in MS, have heightened susceptibility to metabolic 
stress compared with oligodendrocytes [74]. In MS, iron accumu-
lates in macrophages and microglia around the rim of lesions, and 
these iron-laden cells show signs of dystrophy [75].

Aceruloplasminemia

Aceruloplasminemia is caused by mutations in CP, encoding 
ceruloplasmin [76], an enzyme that catalyzes the peroxidation of 
ferrous transferrin to ferric transferrin. Aceruloplasminemia pre-
sents in the third to fifth decade of life with a progressive motor di-
sorder, dementia, diabetes mellitus, and retinal degeneration, with 
evidence of brain iron deposition in the basal ganglia [77]. Some of 
the mutant CP cell proteins that exhibit impaired copper incorpo-
ration are able to transform into a CP holoprotein in the presence 
of copper-glutathione, suggesting a disruption of the intracellular 
copper-loading process [78]. The culmination of these abnormal 
cellular processes is the inability to prevent internalization and 
degradation of ferroprotein, leading to defective iron efflux and 
increased intracellular iron [78-80].

Neuroferritinopathy

Neuroferritinopathy may present from adolescence to the six-
th decade, commonly with a progressive extrapyramidal disorder 
with radiological features of iron deposition in the basal ganglia 
and cystic degeneration. FTL is one of the two subunits of the main 
intracellular iron storage protein ferritin, and mutations in the 
encoding gene FTL cause neuroferritinopathy [81]. Pathological 
analyses reveal abnormal nuclear and cytoplasmic ferritin inclusi-
on bodies in glia and neurons of the CNS as well as in other organs 
in association with iron accumulation [82,83]. Furthermore, stu-
dies have found an increase in ubiquitinated proteins and redistri-
bution of proteasome components to the site of ferritin inclusions 
[83]. Mouse model also showed altered gene expression profiles for 
proteins involved in iron homeostasis, including decreased TfR-1 
(the mouse ortholog of human TFRC) and Irp1 (the mouse ortholog 
of human IRP1) as well as markers of oxidative stress, such as lipid 
peroxidation products, oxidatively modified proteins, and protein 
radicals [82]. Although abnormal FTL is able to coassemble with 
endogenous ferritin heavy and light chains, the resultant ferritin 
molecules exhibit reduced efficiency for iron sequestration. This 
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Conclusions
Multifactorial cellular dysfunction is associated with iron dysho-

meostasis in central nervous system resulting in iron accumulati-
on. Mitochondrial dysfunction, protein misfolding and aggregation, 
autophagic-lysosomal dysfunction, neuroinflammation and ferrop-
tosis are usually involved . Advances in MRI imaging techniques for 
specific detection of iron holds a great promise in future to consi-
der iron as a biomarker for preclinical stages of neurodegenerati-
on. Moreover, CSF levels of iron related proteins may aid in early 
diagnosis of sporadic neurodegenerative diseases in the future, like 
CSF ferritin in AD. However lot of questions has to be addressed in 
future regarding iron metabolism in human body right from brain 
sensing to different cells and pathways regulating iron content at 
intercellular level.

impairment in ferritin function results in an increase in the cellu-
lar labile iron pool along with enhanced ROS production, increased 
oxidized protein levels, and decreased proteasomal activity [84]. 
Defective FTL function affects normal iron metabolism, with se-
condary oxidative cell damage implicated as a mechanism in ne-
urodegeneration.

Friedreich's ataxia
Iron relation was first evidenced for myocardial iron deposits in 

FRDA hearts [85]. Much later, iron involvement was recognized by 
the finding of deficiencies of aconitase and succinate dehydrogena-
se [86], both of which are mitochondrial iron–sulfur cluster-con-
taining enzymes. FXN deficiency leads to mitochondrial iron over-
load, defective energy supply, and generation of reactive oxygen 
species [87].

Stroke
Growing evidence indicates that iron accumulation in neurons 

following ischemia increases brain susceptibility to iron-induced 
damage [88-90]. Red blood cell release and lysis have been con-
sidered the major factors mediating iron-induced brain damage 
after ICH [91]. Collagenase, which is commonly used to induce ICH, 
results in iron overload [92]. Moreover, iron overload may contri-
bute to brain edema following ICH [93].

Amyotrophic lateral sclerosis (ALS)
A recent study firstly showed that the serum iron, ferritin, and 

transferrin saturation coefficient were significantly elevated in 
ALS patients, and the iron status was associated with body wei-
ght loss [94]. Serum ferritin may be a candidate biomarker for ALS 
aggravation [95]. Free iron level was also increased in the cere-
brospinal fluid of ALS patients compared to controls [96,97]. A two 
fold increased level of inappropriate iron ligands in cerebrospinal 
fluid (CSF) was also found in patients with ALS, which may increa-
se iron redox activity and reactive oxygen species production [98]. 
Autopsy study demonstrated that iron load in gray matter from 
the frontal cortex of ALS was increased significantly than that of 
controls [99]. The concentration of iron was also increased in the 
spinal cord of ALS patients [100-102]. Disruption in the expressi-
on of brain iron transporters such as lactotransferrin receptor, 
melanotransferrin, and ceruloplasmin is related to iron accumu-
lation in ALS [103]. The deleterious effects on neuronal health and 
survival upon ablation of GPX4 in motor neurons might confer a 
role of ferroptosis to degenerative motor neuron diseases specially 
amyotrophic lateral sclerosis [103].

Sanfilippo syndrome
The reduced expression of Fpn1 has also been connected with 

the activation of N-methyl-D-aspartate (NMDA) receptor (NR)-in-
duced iron accumulation and brain iron retention in Sanfilippo syn-
drome, a pediatric neurodegenerative disease [105].
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