Acta Scientific Medical Sciences (ASMS)(ISSN: 2582-0931)

Research Article Volume 7 Issue 5

Experimental Study of Surgical Wounds in Animals Healing Using a Neodymium Laser

Evsyukova ZA*1, Prazdnikov EN1, Aleksandrushkina NA2,3, Makarevich PI2,3, Popov VS2,3 and Pecherskaya MS4

1Department of Operative Surgery and Topographic Anatomy, MSMDU n.a. Evdokimov, Russia
2Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
3Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
4Main Military Clinical Hospital n.a. N.Burdenko, Russia

*Corresponding Author: Evsyukova ZA, Department of Operative Surgery and Topographic Anatomy, MSMDU n.a. Evdokimov, Russia.

Received: March 13, 2023; Published: April 29, 2023

Abstract

The purpose of the current laboratory study was to study the effect of low-intensity energy of a neodymium laser with a wavelength of 1064 nm and a short pulse (650 μs) on the wound process in mice. For the two experiments, we took 33 mice of the C57bl/6 line and 50 mice of the FVB/d20nt line of their own breeding at the age of 12-20 days. The animals were divided into groups, the control group was general, and other groups were formed on the basis of the laser exposure obtained. Mice were removed from the experiment simultaneously by euthanasia (cervical dislocation), after which the material (back skin) was taken and the sections were stained with hematoxylin-eosin and sent for morphological analysis.

After IHC analysis, it should be considered that the neodymium laser used in the presented laboratory study contributes to the acceleration of the onset of the proliferation phase. In the process of this study, it was revealed that migration of macrophages, mast cells and fibroblasts into the wound occurs during LLLT.

During the main stage of the experiment, it was found that for the study of scar formation, the mouse is not the most optimal object, since wounds in mice heal quickly enough without any effects, respectively, it is impossible to assess the effect of the laser on the entire wound process and, especially, the phase of scar remodeling. LLLT should be used from the moment of wounding and laser treatment should be carried out for 48 hours, after which the animals should be removed from the experiment for histological examination; and histological sections of all groups of animals (LLLT 2 and control group with excretion after 24 and 48 hours) should be followed and markers of angiogenesis should be determined, as well as markers of angiogenesis, as well as markers of angiogenesis. It is necessary to conduct a study with the participation of a biophysicist to study the interaction of neodymium laser energy with blood and plasma proteins.

 Keywords: Neodymium Laser; Plasma; Laser Energy

References

  1. Pallocca G, Leist M. On the usefulness of animals as a model system (part II): Considering benefits within distinct use domains. ALTEX. 2022;39(3):531-539. doi: 10.14573/altex.2207111. PMID: 35871507.
  2. Russell, W.M.S. & Burch, R.L.(1959) The Principles of Humane Experimental Technique.
  3. Greaves NS, Benatar B, Whiteside S, Alonso‐Rasgado T, Baguneid M, Bayat A. Optical coherence tomography: a reliable alternative to invasive histological assessment of acute wound healing in human skin?Br J Dermatol. 2014; 170:840‐850. [PubMed] [Google Scholar]
  4. Weingarten MS, Samuels JA, Neidrauer M et al. Diffuse near‐infrared spectroscopy prediction of healing in diabetic foot ulcers: a human study and cost analysis. Wound Repair Regen. 2012; 20:911‐917. [PubMed] [Google Scholar]
  5. Fronza M, Caetano GF, Leite MN et al. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing. PLoS ONE. 2014; 9:e112297. [PMC free article][PubMed] [Google Scholar]
  6. Velidandla S, Gaikwad P, Ealla KK, Bhorgonde KD, Hunsingi P, Kumar A. Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis. J Int Oral Health. 2014; 6:33‐38. [PMC free article][PubMed] [Google Scholar]
  7. Leite SN, Leite MN, Caetano GF, Ovidio PP, Jordao Junior AA, Frade MA. Phototherapy improves wound healing in rats subjected to high‐fat diet. Lasers Med Sci. 2015; 30:1481‐1488. [PubMed] [Google Scholar]
  8. Masson‐Meyers DS, Enwemeka CS, Bumah VV, Andrade TA, Cashin S, Frade MA. Antimicrobial effects of Copaifera langsdorffiioleoresin in infected rat wounds. Int J Appl Microbiol Sci. 2013c; 3:9‐20. [Google Scholar]
  9. Caetano GF, Frade MA, Andrade TA et al. Chitosan‐alginate membranes accelerate wound healing. J Biomed Mater Res B Appl Biomater. 2015a; 103:1013‐1022. [PubMed] [Google Scholar]
  10. Leite SN, Jordao Junior AA, Andrade TA, Masson DS, Frade MA. Experimental models of malnutrition and its effect on skin trophism. An Bras Dermatol. 2011; 86:681‐688. [PubMed] [Google Scholar]
  11. Marien KM, Croons V, Waumans Y et al. Development and validation of a histological method to measure microvessel density in whole‐slide images of cancer tissue. PLoS ONE. 2016;11(9): e0161496. [PMC free article][PubMed] [Google Scholar]
  12. Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016; 26:1079‐1098. [PMC free article][PubMed] [Google Scholar]
  13. Echtermeyer F, Streit M, Wilcox‐Adelman S et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan‐4. J Clin Invest. 2001;107(2):R9‐R14. [PMC free article][PubMed] [Google Scholar]
  14. Masson‐Meyers DS, Bumah VV, Enwemeka CS. Blue light does not impair wound healing in vitro. J Photochem Photobiol B. 2016;160:53‐60. [PubMed] [Google Scholar]
  15. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219‐229. [PMC free article][PubMed] [Google Scholar]
  16. Shrimanker M, Patel N, Modi H, Dave R. A review: screening models for wound healing activity in animals. Am J Pharm Tech Res. 2013;3:237‐251. [Google Scholar]
  17. Hudson DM, Eyre DR. Collagen prolyl 3‐hydroxylation: a major role for a minor post‐translational modification?Connect Tissue Res. 2013; 54:245‐251. [PMC free article] [PubMed] [Google Scholar]
  18. Amirthalingam E, Rodrigues M, Casal‐Dujat L et al. Macrocyclic imidazolium‐based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs. J Colloid Interface Sci. 2015; 437:132‐129. [PubMed] [Google Scholar]
  19. Andrade TA, Iyer A, Das PK et al. The inflammatory stimulus of a natural latex biomembrane improves healing in mice. Braz J Med Biol Res. 2011; 44:1036‐1047. [PubMed] [Google Scholar]
  20. Caetano GF, Bártolo PJ, Domingos M, Oliveira CC, Leite MN, Frade MA. Osteogenic differentiation of adipose‐derived mesenchymal stem cells into polycaprolactone (PCL) scaffold. Procedia Eng. 2015b;110:59‐66. [Google Scholar]
  21. Nauseef WM. Myeloperoxidase in human neutrophil host defence. Cell Microbiol. 2014;16:1146‐1155. [PMC free article][PubMed] [Google Scholar]
  22. Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010; 3:643‐653. [PMC free article][PubMed] [Google Scholar]
  23. Rasilainen S, Nieminen JM, Levonen AL, Otonkoski T, Lapatto R. Dose‐dependent cysteine‐mediated protection of insulin‐producing cells from damage by hydrogen peroxide. Biochem Pharmacol. 2002; 63:1297‐1304. [PubMed] [Google Scholar]
  24. Beak SM, Paek SH, Jahng Y, Lee YS, Kim JA. Inhibition of UVA irradiation‐modulated signaling pathways by rutaecarpine, a quinazolinocarboline alkaloid, in human keratinocytes. Eur J Pharmacol. 2004;498:19‐25. [PubMed] [Google Scholar]
  25. King BA, Oh DH. Spatial control of reactive oxygen species formation in fibroblasts using two‐photon excitation. Photochem Photobiol. 2004; 80:1‐6. [PMC free article][PubMed] [Google Scholar]
  26. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agric Food Chem. 2009; 57:1655‐1666. [PubMed] [Google Scholar]
  27. Vasconcelos SM, Goulart MO, Moura JB, Manfredini V, Benfato MS, Kubota LT. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quim Nova. 2007; 30:1323‐1338. [Google Scholar]
  28. Tsuji JM, Whitney JD, Tolentino EJ, Perrin ME, Swanson PE. Evaluation of cellular wound healing using flow cytometry and expanded polytetrafluroethylene implants. Wound Repair Regen. 2010; 18:335‐340. [PMC free article][PubMed] [Google Scholar]
  29. Kotwal GJ, Sufan CS. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017; 62:353‐364. [PMC free article][PubMed] [Google Scholar]
  30. Krzyszczyk P, Rene SR, Andre PA, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro‐wound healing phenotypes. Front Physiol. 2018; 9:419. [PMC free article][PubMed] [Google Scholar]
  31. Bashir S, Sharma Y, Elahi A, Khan F. Macrophage polarization: the link between inflammation and related diseases. Inflamm Res. 2016;65(1):1‐11. [PubMed] [Google Scholar]
  32. Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013; 120:163‐184. [PubMed] [Google Scholar]
  33. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176‐185. [PubMed] [Google Scholar]
  34. Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol. 2015; 27(4):237‐248. [PubMed] [Google Scholar]
  35. ГОСТ 33216-2014 «Правила содержания и ухода за лабораторными грызунами и кроликами» https://docs.cntd.ru/document/1200127506
  36. Ehrenwerth J., Eisenkraft J. B. (eds); Anesthesia Equipment: Principles and Applications. Mosby-Year Book, St. Louis, 1993.
  37. Ananda N, Ariawan D, Juniantito V. Effects of the Hydnophytum formicarum plant extract on collagen density, angiogenesis, wound length, and re-epithelialization in wound healing: Experimental study on rats. Dent Med Probl. 2022;59(1):67–73. doi:10.17219/dmp/140208
  38. Сахно Л.В., Шевела Е.Я., Черных Е.Р. Фенотипические и функциональные особенности альтернативно активированных макрофагов: возможное использование в регенеративной медицине. Иммунология. 2015; 36(4): 242–246. УДК 612.112.95.063:616-085.275
  39. Novak M.L., Koh T.J. Macrophage phenotypes during tissue repair. Leukoc. Biol. 2013; 93(6): 875–81.
  40. Алексеева Н. Т., Глухов А. А. К вопросу о роли тучных клеток в заживлении ран. Вестник экспериментальной и клинической хирургии. 2011; 4(4):864–870.
  41. Быков В. Л. Секреторные механизмы и секреторные продукты тучных клеток. Морфология. 1999;115(2):64–72.

 

Citation

Citation: Evsyukova ZA., et al. “Experimental Study of Surgical Wounds in Animals Healing Using a Neodymium Laser”.Acta Scientific Medical Sciences 7.5 (2023): 217-234.

Copyright

Copyright: © 2023 Evsyukova ZA., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate30%
Acceptance to publication20-30 days
Impact Factor1.403

Indexed In





Contact US