Acta Scientific Veterinary Sciences (ISSN: 2582-3183)

Research Article Volume 2 Issue 12

Anthelmintic Activity of Petiveria alliacea, Bursera simaruba y Casearia corymbosa Collected in Two Seasons on Ancylostoma caninum, Haemonchus placei and Cyathostomins

Gabriela Janett Flota-Burgos1, José Alberto Rosado-Aguilar1*, Roger IvánRodríguez-Vivas1, Rocío Borges-Argáez2, Marcela Gamboa-Angulo2 and Cintli Martínez-Ortiz-de-Montellano3

1Departamento de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, México
2Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., México
3Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México

*Corresponding Author:José Alberto Rosado-Aguilar, Departamento de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, México.

Received: November 03, 2020; Published: November 18, 2020

×

Abstract

  The aim of the study was to evaluate methanolic extracts from the stem and leaves of Petiveria alliacea, bark of Bursera simaruba and Casearia corymbosa collected in two seasons on eggs of Ancylostoma caninum, Haemonchus placei and cyathostomin. The egg hatch inhibition assay was used at concentrations of 3600, 2400, 1200, 600 and 300 µg/ml. The extracts with high activity were also evaluated at 300, 150, 75 and 37.5 µg/ml. Lethal concentrations were determined at 50% (LC50) and 99% (LC99), as well as the confidence intervals at 95%. Differences (p < 0.05) between control and evaluated concentrations were analyzed. The P. alliacea extract collected in the rainy season (CRS) showed a percentage of egg hatch inhibition (PEHI) ≥ 91.6% from 150 µg/ml, and ovicidal effect (≥ 90.1%) from 150 µg/ml with stem and 300 µg/ml with leaves in both parameters on the three genera of gastrointestinal nematodes evaluated. The B. simaruba extract CRS (3600 µg/ml) showed a PEHI of 95.4, 25.4 and 56.3% against A. caninum, H. placei and cyathostomins, respectively. While the C. corymbosa extract at the same season and concentration had the highest PEHI of 55.1, 74.0 and 56.4% against the three nematodes, respectively. The effect of B. simaruba and C. corymbosa on the eggs was the failure of the L1 larvae to hatch (23.7 - 95.1% and 30.4 - 60.8%, respectively, at 3600 µg/ml). Additionally, it was observed that C. corymbosa extract caused morphological damage to the larvae that hatched (100% from 1200 µg/ml). Extracts from the stem of P. alliacea CRS showed the lowest LC50 (33.3, 78.9 y 68.6 µg/ml) and LC99 (79.5, 178.0 and 277.4 µg/ml) against A. caninum, H. placei and cyathostomins, respectively. It is concluded that the methanolic extracts of P. alliacea, B. simaruba and C. corymbosa collected in rainy season showed the highest anthelmintic activity on eggs of A. caninum, H. placei and cyathostomins. The stem of P. alliacea CRS has high ovicidal activity on the three nematodes, representing a potential alternative control with a broad spectrum against the main nematodes of domestic animals.

Keywords: Control Alternatives; Gastrointestinal Nematodes; Methanolic Extracts; Petiveria alliacea; Bursera simaruba; Casearia corymbosa

×

References

  1. Little S E., et al. “Prevalence of intestinal parasites in pet dogs in the United States”. Veterinary Parasitology 166 (2009): 44-52.
  2. Gilleard J S. “Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance”. Parasitology 12 (2013): 1506-1522.
  3. Matthews J B. “Anthelmintic resistance in equine nematodes”. International Journal of Parasitology: Drugs and Drug Resistance3 (2014): 310-315.
  4. Coles G C., et al. “The detection of anthelmintic resistance in nematodes of veterinary importance”. Veterinary Parasitology 135 (2006): 167-185.
  5. Geurden T., et al. “Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe”. International Journal of Parasitology: Drugs and Drug Resistance 3 (2015): 163-171.
  6. Kopp S R., et al. “Application of in vitro anthelmintic sensitivity assays to canine parasitology: Detecting resitance to pyrantel in Ancylostoma caninum”. Veterinary Parasitology 152 (2008): 284-293.
  7. Kitchen S., et al. “Isolation and characterization of a naturally occurring multidrug-resistance strain of the canine hookworm, Ancylostoma caninum”. International Journal for Parasitology 49 (2019): 397-406.
  8. Mungube E O., et al. “Prevelance of multiple resistant Haemonchus contortus and Ostertagia species in goats and cattle in Machakos, Eastern Kenya”. Livestock Research for Rural Development 27 (2015).
  9. Ramos F., et al. “Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil”. International Journal of Parasitology: Drugs and Drug Resistance. 6.1 (2016): 93-101.
  10. Jaeger L H and Carvalho-Costa F A. “Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: a systematic review”. BMC Veterinary Research1 (2017): 358.
  11. Relf V E., et al. “Anthelmintic efficacy on UK Thoroughbred stud farms”. International Journal for Parasitology8 (2014): 507-514.
  12. Daniels S P and Proudman C J. “Shortened egg reappearance after ivermectin or moxidectin use in horses in the UK”. The Veterinary Journal 218 (2016): 36-39.
  13. Bellaw J L., et al. “Anthelmintic therapy of equine cyathostomin nematodes – larvicidal efficacy, egg reappearance period, and drug resistance”. International Journal for Parasitology2 (2018): 97-105.
  14. Hoste H., et al. “Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock”. Veterinary Parasitology 212 (2015): 5-17.
  15. Arjona-Cambranes K A., et al. “Actividad antihelmíntica in vitro de extractos vegetales contra huevos de Ancylostoma de perros”. Ciencia y Agricultura 13.2 (2016): 76.
  16. Rosado-Aguilar J A., et al. “Actividad antihelmíntica de extractos metanólicos contra huevos del orden Strongylida de bovinos”. Ciencia y Agricultura2 (2016): 78.
  17. Flota-Burgos G J., et al. “Anthelminthic activity of methanol extracts of Diospyros anisandra and Petiveria alliacea on cyathostomin (Nematoda: Cyathostominae) larval development and egg hatching”. Veterinary Parasitology 248 (2017): 74-79.
  18. Instituto Nacional de Estadística y Geografía, “Clima en Yucatán”. (2019).
  19. Rosado-Aguilar J A., et al. “Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: ixodidae)”. Veterinary Parasitology 168 (2010): 299-303.
  20. Vargas-Magaña J J., et al. “Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: Interactions between tannins and other plant secondary compounds”. Veterinay Parasitology 206 (2014): 322-327.
  21. Chan-Pérez J I., et al. “In vitro susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone: water extracts of two tannin rich plants”. Veterinary Parasitology 217 (2016): 53-60.
  22. Peachey L E., et al. “An evidence-based approach to the evaluation of ethnoveterinary medicines against strongyle nematodes of equids”. Veterinary Parasitology 210 (2015): 40-52.
  23. Robertson J L., et al. “POLO: A User’s Guide to Probit or Logit Analysis”. Pacific Southwest Forest and Range Experiment Station, Bekerley, California (1980).
  24. Arceo-Medina G., et al. “Effect of season and sampling location on acaricidal activity of Petiveria alliacea on larvae Rhipicephalus microplus resistant to acaricides”. Journal of Veterinary Medicine and Allied Science1 (2017): 1-22.
  25. Silva J P., et al. “Antimicrobial and anticancer potential of Petiveria alliacea (Herb to “Tame the Master”): A review”. Pharmacognosy Reviews 12 (2018): 85-93.
  26. Wabo Poné J., et al. “In vitro activity of ethanol, cold water and hot water extracts of the bark of Canthium mannii (Rubiaceae) stem on Ancylostoma caninum eggs”. East and Central African Journal of Pharmaceutical Science 9 (2006): 14-28.
  27. Liu Z. “Preparation of botanical samples for biomedical research”. Endocrine, Metabolic & Immune Disorders - Drug Targets 2 (2008): 112-121. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936020/
  28. Tonini Zamprogno T., et al. “Activity of Euterpe edulis Martius, Mikania glomerata Spreng, and Mikania laevigata Schultz Bip. Extracts on gastrointestinal nematodes Toxocara canis and Ancylostoma caninum. Archives of Clinical Infectious Diseases3 (2015): e27495.
  29. De Aguiar Santos I., et al. “Evaluation of ovicidal and larvicidal activity of ten plant extracts against AncylostomaRevista de Patología Tropical 42.2 (2013): 209-216.
  30. Castañeda-Ramírez, G S., et al. “An in vitro approach to evaluate the nutraceutical value of plant foliage against Haemonchus contortus¨. Parasitology Research12 (2018): 3979-3991.
  31. Castañeda-Ramírez G S. “Effects of different extracts of three Anona species on egg-hatching processes of Haemonchus contortus”. Journal of Helmintologye77 (2020): 1-8.
  32. Payne S E., et al. “Australians plants show anthelmintic activity toward equine cyathostomins in vitro”. Veterinary Parasitology 1 (2013): 153-160.
  33. Souza M., et al. “Anthelmintic acetogenin from Annona Squamosa Seed”. Anais da Academia Brasileira de Ciências 80 (2008): 271-277.
  34. Chagas A C. “Medicinal plant extracts and nematode control”. CAB Reviews8 (2015): 1-8.
  35. D’Angelo F., et al. “Evaluation of ovicidal and larvicidal activities of methylene chloride extract of Annona senegalensis (Annonaceae) stem bark on Heligmosomoides bakeri (Nematoda, Heligmosomatidae)”. Global Journal of Science Frontier Research 2 (2014): 21-39.
  36. Mendoza-Patiño N. “Farmacología médica”. MX: Editorial Médica Panamericana. Ciudad de México, México (2008).
  37. López-Aroche U., et al. “In vitro nematicidal effects of medicinal plants from the Sierra de Huautla, Biosphere Reserve, Morelos, Mexico against Haemonchus contortus infective larvae”. Journal of Helmintology1(2008): 25-31.
  38. Estrada Faggioli E. “Bursera simaruba, el árbol sagrado”. Bioma. 7 (2013): 7-11.
  39. Rosas-Arreguín P., et al. “Bursera fagaroides, effect of an ethanolic extract on ornithine decarboxylase (ODC) activity in vitro and on the growth of Entamoeba histolytica”. Experimental Parasitology3 (2008): 398-402.
  40. Nieto-Yañez O J., et al. “In vivo and in vitro antileishmanial effects of methanolic extract from bark of Bursera aptera”. African Journal of Traditional, Complementary and Alternative Medicines2 (2008): 188-197.
  41. Bird A F. and Bird J. “The structure of nematodes”. Academic Press Inc. San Diego, California (1991)
  42. Mansfield L S., et al. “Characterization of the eggshell of Haemonchus contortus--I. Structural components”. Comparative Biochemistry and Physiology B3 (1992): 681-686.
  43. Arellano Rodriguez J., et al. “Nomenclatura, Forma de Vida, Uso, Manejo y Distribución de las Especies Vegetales de la Península de Yucatán”. Universidad Autónoma de Yucatán Mérida, Yucatán (2003).
  44. Vila-Luna M L., et al. “Cytotoxic activity of casearborin c isolated from Casearia corymbosa”. Journal of Mexican Chemical Society 3 (2018): 24-28.
  45. Borges D G L., et al. “Discovery of potential ovicidal natural products using metabolomics”. PLoS One1 (2019): e0211237.
  46. Brunet S., et al. “Ultrastructural changes in the third-stage, infective larvae of ruminant nematodes treated with sainfoin (Onobrychis viciifolia) extract”. Parasitology International4 (2011): 419-424.
  47. Kubec R. and Musah R A. “Cysteine sulfoxide derivatives in Petiveria alliacea”. Phytochemistry6 (2001): 981-985.
  48. Luz D A., et al. “Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea (Phytolaccaceae): A review”. Journal of Ethnopharmacology 185 (2016): 182-201.
  49. Benevides P J., et al. “Antifungal polysulphides from Petiveria alliacea L”. Phytochemistry5 (2001): 743-747.
  50. Rosner H., et al. “Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAPkinase tyrosine dephosphorylation by dibenzil trisulphide”. Biochimica et Biophysica Acta2 (2001): 166-177.
  51. Kim S., et al. “Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L”. Journal of Ethnofharmacology 104 (2006): 188-192.
  52. Sariego-Frómeta S., et al. “Petiveria alliacea: distintas condiciones experimentales en la elaboración de extractos con actividad antimicrobiana”. Revista QuímicaViva 3.12 (2013): 274-287.
  53. Maldini M., et al, “Phenolic compounds from Bursera simaruba bark: phytochemical investigation and quantitative analysis by tandem mass spectrometry”. Phytochemistry 70 (2009): 641-649.
  54. Beltrán D., et al. “Tamizaje fitoquímico preliminar de especies de pantas promisorias de la costa atlántica colombiana”. Revista Cubana de Plantas Medicinales 18 (2013): 619-631.
  55. Mosaddick M A., et al. “Clerodane diterpenos from the stems of Casearia grewiifolia gelonioides (Flacourtiaceae/Salicaceae sensu lato)”. Biochemical Systematics and Ecology 35 (2007): 631-633.
  56. Ferreira P M P., et al. “Folk uses and pharmacological properties of Casearia sylvestris: a medicinal review”. Anais da Academia Brasileria de Ciências 83.4 (2011): 1373-1384.
  57. Xia L., et al. “The genus Casearia: a phytochemical and pharmacological overview”. Phytochemistry Reviews 14 (2014): 99-135.
  58. Espindola L S., et al. “Trypanocidal activity of a new diterpene from Casearia sylvestris Lingua”. Planta Med 70.11 (2004): 1093-1095.
  59. Kanokmedhakul S., et al. “New bioactive clerodane diterpenoids from the bark of Casearia grewiifolia”. Journal of Natural Products2 (2005): 183–188.
  60. Mesquita M L., et al. “Antileishmanial and trypanocidal activity of Brazilian Cerrado plants”. Memórias do Instituto Oswaldo Cruz7 (2005): 783–787.
  61. Mesquita M L., et al. “In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies”. Journal of Ethnopharmacology1 (2007): 165–170.
  62. Castelo A V M., et al. “Seasonal Variation in the Yield and the Chemical Composition of Essential Oils from Two Brazilian Native Arbustive Species”. Journal of Applied Sciences8 (2012): 753-760.
  63. Ben Jemâa J M., et al. “Seasonal variations in chemical composition and fumigant activity of five Eucalyptus essential oils against three moth pests of stored dates in Tunisia”. Journal of Stored Products Research 48 (2012): 61-67.
  64. Valares Masa C. “ Variación del metabolismo secundario en plantas debida al genotipo y al ambiente”. Diss Universidad de Extremadura. Badajoz, España (2011).
  65. Anese S., et al. “Seasonal variation in phytotoxicity of Drimys brasiliensis Miers”. Idesia3 (2014): 109-116.
  66. Zangueu C B., et al. “In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus”. BMC Veterinay Research1 (2018): 147.
  67. Kumar M U., et al. “In vitro effect of botanicals against rice root knot nematode Meloidogyne graminícola”. Journal of Pharmacognosy and Phytochemistry 4 (2019): 1027-1030.
×

Citation

Citation: José Alberto Rosado-Aguilar., et al. “Anthelmintic Activity of Petiveria alliacea, Bursera simaruba y Casearia corymbosa Collected in Two Seasons on Ancylostoma caninum, Haemonchus placei and Cyathostomins". Acta Scientific Veterinary Sciences 2.12 (2020): 12-24.




Metrics

Acceptance rate35%
Acceptance to publication20-30 days
Impact Factor1.008

Indexed In





News and Events


  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is December 25, 2024.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of "Best Article of the Issue"

Contact US