Lingyi Huang1, Zizhuo Zheng1, Hui Li2, Yi Qu2* and Fengyan Zhao2*
1West China College of Stomatology, Sichuan University, China
2Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, China
*Corresponding Authors: Yi Qu/Fengyan Zhao, Professor/ Associate professor, Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, China.
Received: June 11, 2021; Published: July 14, 2021
Background and Aim: White matter injury (WMI) is the most common type of brain injury in premature infants. Hypoxic ischemia (HI) is the major cause of neonatal WMI and in that case oligodendrocytes (OLs) are the main involved cells. Stem cell transplantation which can differentiate into OLs or promote endogenous OLs survival or differentiation is considered to be the optimal strategy for the treatment of WMI. Specifically, the neural crest-derived origin of stem cells from human exfoliated deciduous teeth (SHEDs) predisposes the cells to be optional candidates for the treatment of nervous system diseases. Recently, the conditioned medium from SHEDs (SHED-CM) has also garnered more and more attention as it can replace most of the paracrine roles of SHEDs. In the present study, we aim to explore the effects and related mechanisms of SHED-CM on the treatment of neonatal WMI.
Methods: SHEDs were cultured in vitro and SHED-CM was collected and concentrated through ultrafiltration. Postnatal day 3 SD rats were subjected to HI to establish the neonatal WMI model. SHED-CM was intraventricularly injected into the rats. Then Morris water maze was used to examine the behavioral performance and MBP immunostaining was used to evaluate myelin formation of the rats. To explore related mechanisms, microglia polarization and promyelinating factors expression in rat brain were also examined through qRT-PCR.
Results: SHED-CM promoted brain myelination and enhanced the behavioral performance of WMI rats. It promoted microglia polarization from M1 to M2 and up-regulated promyelinating factors such as Fgf1, Timp3 and Bdnf after HI in rat brain.
Conclusion: SHED-CM rescues WMI in neonatal rats, partly through promoted microglial polarization from M1 to M2 and up-regulated promyelinating factors after HI in rat brain. SHED-CM might be an optional agent for the treatment of neonatal WMI.
Keywords: White Matter Injury; Human Exfoliated Deciduous Teeth; Conditioned Medium; Myelin; Microglia Polarization
Citation: Fengyan Zhao., et al. “Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Rescues White Matter Injury in Neonatal Rats”. Acta Scientific Neurology 4.8 (2021): 06-13.
Copyright: © 2021 Fengyan Zhao., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.