Deepti Pathak1, Achal K Srivastava2, Sheffali Gulati3 and Moganty R Rajeswari1*
1Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
2Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
3Department of Paediatrics, All India Institute of Medical Science, New Delhi, India
*Corresponding Author: Moganty R Rajeswari, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
Received: September 11, 2020; Published: September 26, 2020
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disorder primarily caused by sub-optimal levels of mitochondrial protein, frataxin, and is characterized by hypersensitivity to oxidative stress. Homocysteine (Hcy) is well acknowledged to mediate oxidative stress-induced toxicity and mitochondrial dysfunction in pathogenesis of several cardiovascular and neurological diseases. Here, we tried to explore the correlation between plasma Hcy levels with various biochemical, genetic and clinical parameters in FRDA. Assessment of Hcy levels in blood plasma of FRDA patients (N = 25) and healthy controls (N = 25) showed that mean levels of Hcy were significantly elevated (9.78 ± 2.7 μmol/l) in FRDA as compared to those of controls (7.0 ± 2.05 μmol/l). The clinical severity of FRDA, as reflected by the (GAA) expansion number in DNA (extent of genetic error), the decreased levels of frataxin protein (primary pathogenic marker), longer disease duration and the high score of Friedreich's Ataxia Rating Scale (measure of neuromuscular activity) revealed positive correlation with plasma Hcy levels in FRDA patients. As deficiency of Vitamin B12 is linked to hyperhomocysteinemia, we analyzed the plasma Vitamin B12 levels and found an inverse correlation with those of Hcy, which supports their deregulated metabolic homeostasis in FRDA. Present results highlight the association of Hcy with the pathogenesis of FRDA thus suggesting Hcy as a potential biomarker for disease progression and/therapeutic intervention.
Keywords: Friedreich's Ataxia (FRDA); Homocysteine; Vitamin B12; Oxidative Stress; Neurodegeneration
Citation: Moganty R Rajeswari., et al. “Deregulated Homocysteine Metabolism in Friedreich’s Ataxia Patients: A Risk Factor?". Acta Scientific Neurology 3.10 (2020): 39-47.
Copyright: © 2020 Moganty R Rajeswari., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.