Acta Scientific Neurology (ASNE) (ISSN: 2582-1121)

Review Article Volume 3 Issue 7

Class-I MHC-Restricted T-Cell Associated Molecule (CRTAM) Expression in Cerebellum

Esther López-Bayghen1*, Karla Pérez-Toledo1,2, Leticia Ramírez- Martínez1, Jacqueline Robledo1, Vianney Ortiz3 and Arturo Ortega1

1Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
2Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
3Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México

*Corresponding Author: Esther López-Bayghen, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México.

Received: May 23, 2020; Published: June 08, 2020



The class-I MHC-restricted T-cell associated molecule (CRTAM), an activation molecule expressed in activated Natural Killer cells (NKT) and CD8+ T cells, is highly expressed in the cerebellar cortex, both in neurons and glial cells. During cerebellar development, granule cell migration over Bergmann glia cells depends on neuronal/glia glutamatergic signaling, suggesting a regulated cell-cell interaction process, opening the possibility of CTRAM and Nectin-like 2 involvement. Through the use of the well-established model of chicken cerebellar Bergmann glial cells and a wound/healing assay, we describe herein that glutamate represses CRTAM expression, enhancing migration. These results reveal an unexpected function of CTRAM in the cerebellum

Keywords: CRTAM; Nectin-Like 2; Cell Migration; Glutamate Receptors; Bergmann Glial Cells



  1. Patino-Lopez G., et al. “Human class-I restricted T cell associated molecule is highly expressed in the Cerebellum and is a marker for activated NKT and CD8+ T lymphocytes”. Journal of Neuroimmunology 1-2 (2006): 145-155.
  2. Kennedy J., et al. “A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM)”. Journal of Leukocyte Biology 5 (2000): 725-734.
  3. Patino-Lopez G., et al. “Human class-I restricted T cell associated molecule is highly expressed in the Cerebellum and is a marker for activated NKT and CD8+ T lymphocytes”. Journal of Neuroimmunology 1-2 (2006): 145-155.
  4. Boles KS., et al. “The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM”. Blood3 (2005): 779-786.
  5. Arase N., et al. “Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells”. International Immunology 9 (2005): 1227-1237.
  6. Galibert L., et al. “Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule”. Journal of Biological Chemistry 23 (2005): 21955-21964.
  7. Yeh JH., et al. “Regulation of a late phase of T cell polarity and effector functions by Crtam”. Cell 132.5 (2008): 846-859.
  8. Tonikian R., et al. “A specificity map for the PDZ domain family”. PLoS Biology9 (2008).
  9. Medina-Contreras O., et al. “Role of CRTAM during mouse early T lymphocytes development”. Developmental and Comparative Immunology 2 (2010): 196-202.
  10. Takeuchi A., et al. “CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node”. Journal of Immunology 7 (2009): 4220-4228.
  11. Valle-Rios R., et al. “Characterization of CRTAM gene promoter: AP-1 transcription factor control its expression in human T CD8 lymphocytes”. Molecular Immunology 16 (2009): 3379-3387.
  12. Rojas-Marquez C., et al. “CRTAM is negatively regulated by ZEB1 in T cells”. Molecular Immunology 2 (2015): 290-298.
  13. Biederer T. “Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules”. Genomics1 (2006): 139-150.
  14. Fogel AI., et al. “SynCAMs organize synapses through heterophilic adhesion”. The Journal of Neuroscience 46 (2007): 12516-12530.
  15. Thomas LA., et al. “Expression and Adhesion Profiles of SynCAM Adhesion Molecules Indicate Distinct Neuronal Functions”. The Journal of Comparative Neurology1 (2008): 47-67.
  16. Benson DL., et al. “Molecules, maps and synapse specificity”. Nature Reviews Neuroscience 12 (2001): 899-909.
  17. Mizoguchi A., et al. “Nectin: an adhesion molecule involved in formation of synapses”. Journal of Cell Biology 3 (2002): 555-565.
  18. Kakunaga S., et al. “Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes”. Journal of Cell Science 6 (2005): 1267-1277.
  19. Robbins EM., et al. “SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning”. Neuron5 (2010): 894-906.
  20. Voogd J and M Glickstein. “The anatomy of the Cerebellum”. Trends in Cognitive Sciences 9 (1998): 307-313.
  21. Roussel MF and ME Hatten. “Chapter 8 - Cerebellum: Development and Medulloblastoma, in Current Topics in Developmental Biology, M.A. Dyer, Editor, Academic Press (2011): 235-282.
  22. Xu , et al. “Bergmann Glia Function in Granule Cell Migration During Cerebellum Development”. Molecular Neurobiology 47.2 (2013): 833-844.
  23. Galas L., et al. “Postnatal Migration of Cerebellar Interneurons”. Brain Sciences 6 (2017).
  24. Morales D and ME Hatten. “Molecular markers of neuronal progenitors in the embryonic cerebellar anlage”. The Journal of Neuroscience 47 (2006): 12226-12236.
  25. Hatten ME. “New directions in neuronal migration”. Science5587 (2002): 1660-1663.
  26. Wechsler-Reya RJ and M Scott. “Control of neuronal precursor proliferation in the Cerebellum by Sonic Hedgehog”. Neuron1 (1999): 103-114.
  27. Fonnum F. “Glutamate: a neurotransmitter in mammalian brain”. Journal of Neurochemistry 1 (1984): 1-11.
  28. Hollmann M and S Heinemann. “Cloned glutamate receptors”. Annual Review of Neuroscience 17 (1994): 31-108.
  29. Lopez-Bayghen E and A Ortega. “Glial glutamate transporters: new actors in brain signaling”. IUBMB Life10 (2011): 816-823.
  30. Martinez-Lozada Z., et al. “Signaling through EAAT-1/GLAST in cultured Bergmann glia cells”. Neurochemistry International 6 (2011): 871-879.
  31. Mendez-Flores OG., et al. “Coupling of glutamate and glucose uptake in cultured Bergmann glial cells”. Neurochemistry International 98 (2016): 72-81.
  32. Rakic P. “Neuron‐glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus”. Journal of Comparative Neurology3 (1971): 283-312.
  33. Komuro H and Rakic. “Modulation of neuronal migration by NMDA receptors”. Science5104 (1993): 95-97.
  34. Lyons MR., et al. “The transcription factor calcium‐response factor limits NMDA receptor‐dependent transcription in the developing brain”. Journal of Neurochemistry2 (2016): 164-176.
  35. Aguirre A., et al. “Glutamate regulates kainate-binding protein expression in cultured chick Bergmann glia through an activator protein-1 binding site”. Journal of Biological Chemistry 50 (2000): 39246-39253.
  36. Aguirre A., et al. “Glutamate-dependent transcriptional regulation of the chkbp gene: signaling mechanisms”. Journal of Neuroscience Research 1 (2002): 117-127.
  37. Lopez-Bayghen E and A Ortega. “Glutamate-dependent transcriptional regulation of GLAST: role of PKC”. Journal of Neurochemistry 1 (2004): 200-209.
  38. Ascione F., et al. “Comparison between fibroblast wound healing and cell random migration assays in vitro”. Experimental Cell Research1 (2016): 123-132.
  39. Müller F., et al. “Glutamate receptor expression in the rat retina”. Neuroscience Letters1 (1992): 179-182.
  40. López T., et al. “AMPA/KA receptor expression in radial glia”. Neuroreport4 (1994): 504-506.
  41. Cid ME and A Ortega. “Glutamate stimulates [3H]phorbol 12,13-dibutyrate binding in cultured Bergmann glia cells”. European Journal of Pharmacology 1 (1993): 51-54.
  42. Somogyi P., et al., “Subcellular localization of benzodiazepine/GABAA receptors in the Cerebellum of rat, cat, and monkey using monoclonal antibodies”. Journal of Neuroscience6 (1989): 2197-2209.
  43. Rosas S., et al. “Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1”. Journal of Neurochemistry 4 (2007): 1134-1144.
  44. Gallo V and CA Ghiani. “Glutamate receptors in glia: new cells, new inputs and new functions”. Trends in Pharmacological Sciences 7 (2000): 252-258.


Citation: Esther López-Bayghen., et al. “Class-I MHC-Restricted T-Cell Associated Molecule (CRTAM) Expression in Cerebellum".Acta Scientific Neurology 3.7 (2020): 03-11.


Acceptance rate32%
Acceptance to publication20-30 days

Indexed In

News and Events

  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is June 25, 2024.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of "Best Article of the Issue"
  • Welcoming Article Submission
    Acta Scientific delightfully welcomes active researchers for submission of articles towards the upcoming issue of respective journals.

Contact US