In vitro Susceptibility Patterns of Non-dermatophyte Fungal Agents of Onychomycosis
Gian Carlo González-Carballo1, Stefany Lozada-Alvarado2 and Daniela Jaikel-Víquez3,4*
1Clinical Laboratory of the Dr. R.A. Calderón Guardia Hospital, Costa Rica´s Social Security, San José, Costa Rica
2Section of Mycology, Clinical Laboratory and Blood of the University of Costa Rica (LCBUCR), San José, Costa Rica
3Section of Medical Mycology, School of Microbiology, University of Costa Rica, San José, Costa Rica
4Centro de Investigación en Enfermedades Tropicales (CIET), University of Costa Rica, San José, Costa Rica
*Corresponding Author: Daniela Jaikel-Víquez, Section of Medical Mycology, School of Microbiology, University of Costa Rica, San José, Costa Rica.
Received:
November 02, 2023; Published: November 20, 2023
Abstract
Onychomycoses are nail infections caused by three types of fungi: dermatophytes, yeasts, and non-dermatophyte molds. Members of the latter are Aspergillus versicolor, Fusarium spp. Neoscytalidium dimidiatum and Scopulariopsis spp., which are often confused as laboratory contaminants because their colonies reach maturity in less than a week and are susceptible to cycloheximide. However, N. dimidiatum and Fusarium spp. produce keratinases and thus are considered primary pathogens of nails and skin. These fungi are resistant to fluconazole and present a distinctive susceptibility pattern to the commonly used treatments available. Therefore, the correct identification of the etiological agent is necessary to ensure the proper treatment for the patients. The aim of this review is to compile and analyze the studies carried out on the determination of the minimal inhibitory concentrations to several antifungal agents of the different non-dermatophyte molds causing onychomycosis to provide the clinician with a reference document.
Keywords: Aspergillus versicolor; Fusarium; Neoscytalidium dimidiatum; Scopulariopsis
References
- Yang JH., et al. “A comparative study of KOH test, PAS staining and fungal culture in diagnosis of onychomycosis in Taiwan”. Journal of Dermatological Science 45 (2007): 138-140.
- Salas-Campos I and Gross-Martínez NT. “Agentes etiológicos de onicomicosis diagnosticadas en el laboratorio de micología médica de la Universidad de Costa Rica”. Acta Médica Costarricense2 (2012): 114-118.
- Leung AKC., et al. “Onychomycosis: An Update Review”. Inflammation and Allergy - Drug Targets1 (2020): 32-45.
- Rabagliati BR., et al. “Enfermedad fúngica invasora en pacientes hemato-oncológicos y receptores de trasplante de precursores hematopoyéticos bajo la perspectiva de los criterios diagnósticos EORTC/MSG”. Revista Chilena de Infectología3 (2009): 212-219.
- Pagano L., et al. “Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations”. Blood Review 2 (2017): 17-29.
- Lionakis MS and Kontoyiannis DP. “Glucocorticoids and invasive fungal infections”. Lancet 9398 (2003): 1828-1838.
- Salas-Campos I., et al. “Micosis superficiales diagnosticadas en el Laboratorio de Micología médica de la Universidad de Costa Rica”. Revista Costarricense de Ciencias Médicas1-2 (2007): 29-35.
- Tosti A., et al. “Onychomycosis caused by nondermatophytic molds: Clinical features and response to treatment of 59 cases”. Journal of the American Academy of Dermatology 42 (2000): 217-224.
- Fusaro RM and Miller NG. “Onychomycosis caused by Trichosporon beigelii in the United States”. Journal of the American Academy of Dermatology4 (1984): 747-749.
- Gómez-Sáenz A and Arenas R. “Onicomicosis mixta. Un caso por Trichophyton rubrum, Fusarium y Candida albicans”. Dermatología CMQ 18.1 (2020): 48-50.
- Gross-Martínez NT., et al. “Sensibilidad al fluconazol de aislamientos de Trichophyton rubrum”. Acta méd costarric1 (2014): 23-26.
- Sequeira-Oviedo PM., et al. “Susceptibilidad antimicrobiana de los aislamientos de Fusarium solani provenientes de onicomicosis”. Dermatología Revista Mexicana3 (2017): 197-205.
- Barrantets-Ortiz N., et al. “Susceptibilidad in vitro a antifúngicos de aislamientos de Scopulariopsis provenientes de onicomicosis”. Dermatología Revista Mexicana 63.3 (2017): 261-267.
- Ramírez-Hernández V., et al. “In vitro Activity of Amorolfine, Ciclopirox, Itraconazole and Terbinafine Against Aspergillus versicolor as Agent of Onychomycosis”. Acta Scientific Microbiology3 (2020): 01-06.
- Villalobos-Vargas M., et al. “Susceptibilidad antimicrobiana de aislamientos de Neoscytalidium dimidiatum provenientes de onicomicosis”. Revista Médica de la Universidad de Costa Rica 630 (2020): 28-33.
- Pérez-Cárdenas JE., et al. “Sensibilidad antimicótica de diferentes especies de hongos aislados de pacientes con micosis ungueal en la ciudad de Manzanares (Caldas, Colombia)”. Biosalud 11.2 (2012): 26-39.
- Carrillo-Muñoz AJ., et al. “In vitro activity of voriconazole against dermatophytes, Scopulariopsis brevicaulis and other opportunistic fungi as agents of onychomycosis”. International Journal of Antimicrobial Agents 30 (2007): 157-161.
- Afshari MA., et al. “Antifungal susceptibility and virulence factors of clinically isolated dermatophytes in Tehran, Iran”. Iranian Journal of Microbiology1 (2016): 36-46.
- Oz Y., et al. “Prevalence and epidemiology of tinea pedis and toenail onychomycosis and antifungal susceptibility of the causative agents in patients with type 2 diabetes in Turkey”. International Journal of Dermatology1 (2016): 68-74.
- Ramírez-Hobak L., et al. “Onicomicosis por mohos no dermatofitos. Una revisión”. Dermatología CMQ3 (2017): 184-194.
- Fortún J., et al. “ Formas clínicas y tratamiento”. Enfermedades Infecciosas y Microbiología Clínica 30.4 (2012): 201-208.
- Campos-Muñoz M., et al. “Diagnóstico de un caso inusual de micetoma por Aspergillus”. Revista Cubana de Medicina Militar 2 (2020): 335-344.
- Bonifaz A. Micología Médica Básica.4 ed. México DF: McGraw Hill (2012).
- Gross-Martínez NT and Salas-Campos I. “Métodos diagnósticos en micología médica”. San Pedro: Editorial Universidad de Costa Rica (2012).
- Torres-Rodríguez JM., et al. “Aspergillus versicolor as cause of onychomycosis: report of 12 cases and susceptibility testing to antifungal drugs”. Journal of the European Academy of Dermatology and Venereology1 (1998): 25-31.
- García-Effron G., et al. “In vitro activity of terbinafine against medically important non-dermatophyte species of filamentous fungi”. Journal of Antimicrobial Chemotherapy 6 (2004): 1086-1089.
- Walsh TJ., et al. “Lorene´s Medically Important Fungi. A guide to identification”. 6 ed. Washington DC: ASM Press (2018).
- Li RY., et al. “In vitro susceptibility testing of amorolfine in pathogenic fungi isolated from dermatomycosis patients in China”. Mycoses 47 (2004): 402-406.
- Trovato L., et al. “In vitro susceptibility of nondermatophyte molds isolated from onychomycosis to antifungal drugs”. Journal of Chemotherapy 21.4 (2009): 403-407.
- Silva LB., et al. “Identification and antifungal susceptibility of fungi isolated from dermatomycoses”. Journal of the European Academy of Dermatology and Venereology 5 (2013): 633-640.
- Bueno JG., et al. “In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis”. Clinical and Experimental Dermatology 6 (2009): 658-663.
- Haghani I., et al. “Molecular identification and antifungal susceptibility of clinical fungal isolates from onychomycosis (uncommon and emerging species)”. Mycoses 2 (2019): 128-143.
- Abastabar M., et al. “Low in vitro antifungal activity of tavaborole against yeast and molds from onychomycosis”. Antimicrobial Agents and Chemotherapy12 (2018): e01632-18.
- Ghannoum MA., et al. “A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns”. Journal of the American Academy of Dermatology4 (2000): 641-648.
- Rosa PD., et al. “Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis”. Mycoses9 (2017): 616-622.
- Ataides FS., et al. “Antifungal susceptibility patterns of yeasts and filamentous fungi isolated from nail infection”. Journal of the European Academy of Dermatology and Venereology12 (2012): 1479-1485.
- Aghaei H., et al. “In vitro antifungal susceptibility testing of clinical and environmental Fusarium isolates in Iran”. Archives of Clinical Infectious Diseases2 (2018): e58976.
- Cob-Delgado M and Valverde-Brenas J. “Dermatomicosis por Neoscytalidium dimidiatum. Reporte de un caso”. Rev Colegio de Microb Quím Clín de Costa Rica3 (2018): 192-198.
- Gupta AK and Kohli Y. “In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal therapy”. British Journal of Dermatology2 (2003): 296-305.
- James JE., et al. “In vitro antifungal susceptibility of Neoscytalidium dimidiatum clinical isolates fromo Malaysia”. Mycopathologia 182 (2017): 305-313.
- Kaplan N., et al. “Fungal keratitis due to Scopulariopsis brevicaulis and a potential promising therapeutic effect of antibacterial agents. A case report”. Medicine 100 (2021): 49 (e28203).
- Jo Siu WJ., et al. “Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis”. Antimicrobial Agents and Chemotherapy4 (2013): 1610-1616.
- Zalacain A., et al. “Characterization of the antimicrobial susceptibility of fungi responsible for onychomycosis in Spain”. Medical Mycology 5 (2011): 495-499.
- Sandoval-Denis M., et al. “Phylogeny of clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities”. Journal of Clinical Microbiology6 (2014): 2112-2125.
Citation
Copyright