Comparison of 3 Bacterial Taxonomic Assignment of Pterygium Samples from Mexican Patients by Metagenomic Analysis
Vega-Arce G1*, Sánchez-Vallejo CJ1, Salas-Lais AG2, Alarcón-Hernández E1 and Bautista-de Lucio VM3
1Instituto Politécnico Nacional, Departamento de Bioquímica, Laboratorio de Genética Molecular, CDMX, México
2Instituto Mexicano del Seguro Social, Banco de Muestras, CDMX, México
3Instituto de oftalmología “Conde de Valenciana”, Unidad de Investigación, Laboratorio de Microbiología y Proteómica Ocular, CDMX, México
*Corresponding Author: Vega-Arce G, Instituto Politécnico Nacional, Departamento de Bioquímica, Laboratorio de Genética Molecular, CDMX, México.
Received:
December 01, 2024; Published: January 24, 2025
Abstract
Next-generation sequencing has allowed a better understanding of microbiology and microbiomes. While metagenomic analysis has made it possible to identify microorganisms that were not possible with traditional techniques. One of the platforms for the analysis of microbial samples is Galaxy, an open-source platform with that standardized workflow that facilitates metagenomic analysis, allowing the taxonomic assignment of samples with various databases, such as: PlusPF, Greengenes, SILVA, and RDP. One of the platforms to visualize the data obtained through Galaxy is Pavian, which is also open source that allows the visualization of results in a graphical and statistical way. In such a way that at the level of various systems it has been possible to establish the role of microbiota in the predisposition and development of diseases. In this context the respiratory and digestive systems are the ones that have had the most prominence. But there are other microenvironments that have been explored, which could be involved in the development or certain pathologies, for example the ocular surface; where various studies have established and characterized the healthy microbiota, and others point the specific microbiota present in some diseases. Pterygium is one of the diseases, little researched in this context; this being a disease with tumor characteristics, proliferative, fibrovascular and inflammatory; that invades the cornea and can produce alterations such as astigmatism, decreased visual acuity or even blindness. The objective of this study was to determine if there was a significant difference in bacterial identification, using various databases, in pterygium samples form Mexican patients. The database that yielded the highest number of species-level assignments was PlusPF, followed by Greengenes, while SILVA only achieved assignments at the gender level.
Keywords:Pterygium; Mexican Patients; Metagenomic Analysis; Databases; Ocular Surface; Blindness
References
- Schlunck G., et al. “Next-generation sequencing of the human aqueous humour microbiome”. International Journal of Molecular Sciences 25 (2024): 6128.
- Watts G and Hurwitz B. “Metagenomic next-generation sequencing in clinical microbiology”. Microbiology Newsletter 42 (2020): 53-59.
- Matysiak A., et al. “Characterization of Ocular Surface Microbial Profiles Revealed Discrepancies between Conjunctival and Corneal Microbiota”. Pathogens (Basel, Switzerland), 10 (2021): 405.
- Gu W., et al. “Clinical metagenomic next-generation sequencing for pathogen detection”. Annual Review of Pathology 14 (2019): 319-338.
- Kim S., et al. “Hierarchical structured component analysis for microbiome data using taxonomy assignments”. EEE/ACM Transactions on Computational Biology and Bioinformatics 19 (2022): 1302-1312.
- Valenzuela F., et al. “El gen ARNr 16S en el estudio de comunidades microbianas marinas”. Ciencias Marinas 41 (2015): 297-313.
- Durazzi F., et al. “Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gun microbioma”. Scientific Reports 11 (2021): 3030.
- Balvočiūtė M and Huson D. “SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies compare?”. BMC Genomics 18 (2017): 114.
- Hiltemann S., et al. “Galaxy Training: A powerful framework for teaching!”. PLoS Computational Biology 19 (2023): e1010752.
- Lu J., et al. “Metagenome analysis using the Kraken software suite”. Nature Protocols 17 (2022): 2815-2839.
- Walker M. “Metagenomic Data Analysis”. (1st). (S. Mitra, Ed.) Humana (2023): 55-67.
- Breitwieser F and Salzberg S. “Pavian interactive analysis of metagenomics data for microbiome studies and pathogen identification”. Bioinformatics 36 (2020): 1303-1304.
- Wang C., et al. “The clinical application of metagenomic next-generation sequencing in infectious diseases at a tertiary hospital in China”. Frontiers in Cellular and Infection Microbiology 12 (2022): 957073.
- Chu W., et al. “Pterygium: new insights”. Eye 34 (2020): 1047-1050.
- Shahraki T., et al. “Pterygium: an update on pathophysiology, clinical features, and management”. Therapeutc Advances in Ophthalmology 13 (2021): 1-21.
- Tong L., et al. “Conjuntivochalasis is the precursor to pterygium”. Medical Hypotheses 81 (2013): 927-930.
- Wanzeler AC., et al. “Mechanisms and biomarker candidates in pterygium development". Arquivos brasileiros de oftalmologia 82 (2019): 528-536.
- Cárdenas C., et al. “Molecular Basis of Pterygium Development”. Seminars in Ophthalmology 31 (2016): 567-583.
- Taher N., et al. “Amniotic membrane transplantation and conjunctival autograft combined with mitomycin C for the management of primary pterygium: A systematic review and meta-analysis”. Frontiers in Medicine 9 (2022): 1-13.
- Cubillo A and Chacón E. “Pterigión: conceptos y manejo actual”. Revista Médica Sinergia 6 (2021): e740.
- Lluch S., et al. “What biomarkers explain about pterygium OCT pattern”. Graefe´s Archive for Clinical and Experimental Ophthalmology 254 (2016): 143-148.
- Zavala J., et al. “Expresión de genes del metabolismo de lípidos y dolesterol en fibroblastos de pterigión: análisis comparativo con adipocitos y otros fibroblastos”. Revista Mexicana De Oftalmología 93 (2019): 7-13.
- Sati A., et al. “Mini-simple limbal epithelial transplantation versus conjunctival autograft fixation with fibrin glue after pterygium excision: a randomized controlled trial”. Cornea 38 (2019): 1345-1350.
- García KP., et al. “Correlación morfológica del pterigión y su evolución clínica”. Revista del Hospital General de México, 69 (2006): 205-211.
- Singh S. “Pterygium: epidemiology prevention and treatment”. Community Eye Healht 30 (2017): S5-S6.
- Dong Q., et al. “Diversity of bacteria at healthy human conjunctiva”. Investigative Ophthalmology and Visual Sciences 52 (2011): 5408-5413.
- Lu L and Liu J. “Human microbiota and ophthalmic disease”. The Yale Journal of Biology and Medicine 89 (2016): 325-330.
- Huang Y., et al. “Defining the normal core microbiome of conjunctival microbial communities”. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 22 (2016): 643.e7-643.e12.
- Ozkan J., et al. “Temporal stability and composition of the ocular surface microbiome”. Scientific Reports 7 (2017): 9880.
- Córdova J., et al. “Determinación de la flora bacteriana conjuntival en el preoperatorio de la cirugía de catarata”. Revista Médica del Hospital Genera de México 71 (2008): 77-82.
- Hernández JC., et al. “Queratitis infecciosa: tendencias microbiológicas y sensibilidad a antibiótios. Segundo reporte anual del grupo de estudio de microbiología ocular del Instituto de Oftalmología "Conde de Valenciana””. Revista mexicana de oftalmología 87 (2013): 100-109.
- Martin V., et al. “Caracterización de la microbiota conjuntival transitoria y residente de adultos jóvenes”. Ciencia y Tecnología para la Salud Visual y Ocular 15 (2017): 37-45.
- Community T. “The Galaxy platform for accesible, reproducible and collaborative data analyses: 2024 update”. Nuleic Acids Research (2024): W83-W84.
- Baim A., et al. “The microbiome and ophthlamic disease”. Experimental Biology and Medicine 244 (2019): 419-429.
- Petrillo F., et al. “Current evidence on the ocular surface microbiota and related diseases”. Microorganisms 8 (2020): 1033.
- Zilliox M and Bouchard C. “The microbiome ocular surface, and corneal disorders”. American Journal of Pathology 193 (2023): 1648-1661.
Citation
Copyright