In-silico Studies of Jatropha curcas Bioactive Compounds as Anti SARS-CoV-2
Saeful Amin1*, Widia Danisa Nurul Huda1, Winda Trisna Wulandari1 and Salsabila Adlina2
1Department of Pharmacy, Bakti Tunas Husada University, Indonesia
2Department of Pharmacy, Perjuangan University, Indonesia
*Corresponding Author:Saeful Amin, Department of Pharmacy, Bakti Tunas Husada University, Indonesia.
Received:
June 11, 2024; Published: July 20, 2024
Abstract
COVID-19 is a disease caused by Coronavirus a new type Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) which includes a disease outbreak that began at the end of December 2019 marked by a mysterious pneumonia case of unknown etiology, starting in Wuhan, China which until now it is still a concern and has not experienced a termination of the case. Jatropha curcas L. has several secondary metabolites that have antiviral activity which can be a potential antiviral therapy for SARS-CoV-2. The purpose of this study was to determine the compounds contained in the Jatropha plant and the interactions that occur in inhibiting SARS-CoV-2 by molecular docking and molecular dynamic. The results showed that the compounds rhoifolin and stellarin-2 had physicochemical properties with large molecular weights and good pharmacokinetics and toxicity. Results docking score docking was -94.8779 against the 5R7Y receptor and then -108.2190 for stellarin-2 to the 7TLL receptor and had good stability in molecular dynamics compared to native ligands and Molnupiravir for comparison. The interactions formed were 6 hydrogen bonds in rhoifolin and 7 hydrogen bonds in stellarin-2. This shows that rhoifolin and stellarin-2 have potential as anti-SARS-CoV-2 candidates.
Keywords: Jatropha; Molecular Docking; Molecular Dynamic; Rhoifolin; SARS-CoV-2; Stellarin-2
References
- Agrawal A., et al. “Jatropha curcas plant as Antiviral agent and as a Biodesel”. International Journal of Pharmacy and Life Sciences 3 (2020): 6516-6519.
- Bimonte S., et al. “Potential antiviral drugs for SARS-Cov-2 treatment: Preclinical findings and ongoing clinical research”. In Vivo 34 (2020): 1597-1602.
- Chemairs (2019).
- Dahake R., et al. “Potential Anti-HIV activity of Jatropha curcas Linn. Leaf extracts”. Journal of Antivirals and Antiretrovirals 7 (2013): 160-165.
- Ghosh AK., et al. “Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure-Activity Relationship, and X-ray Structural Studies”. Journal of Medicinal Chemistry 19 (2021): 14702-14714.
- Hariz MF. “Uji Sitotoksik, Toksisitas, dan Prediksi Sifat Fisikokimia Senyawa Isoliquiritigenin dan Oxyresveratrol Terhadap Reseptor B-Sel Lymphoma 2 (4AQ3) dan Vaskular Endotelia Growth Factor Reseptor-2 (2RL5) Sebagai Terapi Kanker Servic Secara In Silico”. Universitas Islam Negeri Malang (2019).
- Herawati IE., et al. “Prediction Of Anticancer Activity Of Ricin-A Through Autophagy Pathway Using Molecular Docking On Beclin-1, LC3, and p62”. Jurnal Ilmiah Farmako Bahari Journal1 (2022): 22-30.
- Indrawijaya YYA., et al. “Cytotoxic Activity and Physicochemical Propreties Of Gendarusin A-E Compounds On Estrogen Alfa Receptors (2JF9)”. Journal of Islamic Pharmacy1 (2020): 56-64.
- Krihariyani D., et al. “Studi Insilico Aktivitas Antioksidan dan ADMET Brazilein Kayu Secang (Caesalpinia sappan L.) terhadap Escherichia Coli Extended Spectrum BetaLactamase (ESBL)”. Prosiding Seminar Nasional Kesehatan (2019): 251-257.
- Kumar T R., et al. “Experimental Investigation on the Performance of a Solar Still Using SiO2 Nanoparticles /Jatropha curcas L”. Silicon (2021).
- Lestari T. “Studi Interaksi Senyawa Turunan 1 , 3-Dibenzoiltiourea sebagai Ribonukleotida Reduktase Inhibitor”. Jurnal Farmasi Indonesia3 (2015): 163-169.
- Lipinski CA. “Lead- and drug-like compounds: The rule-of-five revolution”. Drug Discovery Today: Technologies4 (2004): 337-341.
- Liu K and Kokubo H. “Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study”. Journal of Chemical Information and Modeling10 (2017): 2514-2522.
- Dermawan D., et al. “Molecular Dynamics Simulation of Estrogen Receptor Alpha Against Andrografolid as Anti Breast Cancer” 6.2 (2019): 65-76.
- Patil D., et al. “Evaluation of Jatropha curcas Linn. leaf extracts for its cytotoxicity and potential to inhibit hemagglutinin protein of influenza virus”. Indian Journal of Virology2 (2013): 220-226.
- Pires DEV., et al. “pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures”. Journal of Medicinal Chemistry9 (2015): 4066-4072.
- Rachmania Arcinthya R and Prof. Dr. Hamka. “Validasi Protokol Skrining Virtual dan Analisis Interaksi Inhibitor Antiproliferasi Sel Kanker Berbasis Bahan Alam Terhadap Reseptor Cyclin-Dependent Kinase 4 (CDK 4)”. Media Farmasi1 (2019): 21-40.
- Rothan H A and Byrareddy S N. “The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak”. Journal of Autoimmunity 109 (2020): 102433.
- Ruswanto R., et al. “Kuersetin, Penghambat Uridin 5-Monofosfat Sintase Sebagai Kandidat Anti-kanker”. ALCHEMY Jurnal Penelitian Kimia2 (2018): 236-252.
- Ruswanto R., et al. “Desain dan Studi In Silico Senyawa Turunan Kuwanon-H sebagai Kandidat Obat Anti-HIV”. Jurnal Kimia VALENSI1 (2020): 57-66.
- Tallei TE., et al. “Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study”. Scientifica (2020).
- Vinchurkar A S., et al. “Screening for Larvicidal Activity of Jatropha curcas”. Open Access International Journal of Science and Engineering12 (2017): 14-16.
Citation
Copyright