In-vitro Anti-hypertensive, Anti-oxidant and Anti-fungal Properties of Green Synthesized Gold
Nanoparticles from Icacina Trichantha Leaf Aqueous Extract
Oladipo IC*, Ajadi KA and Ogunsona SB
Department of Science Laboratory Technology, Ladoke Akintola University of Technology, Oyo State, Nigeria
*Corresponding Author: Oladipo IC, Professor, Department of Science Laboratory Technology, Ladoke Akintola University of Technology, Oyo State, Nigeria.
Received:
May 18, 2023; Published: June 20, 2023
Abstract
Nanotechnology is one of the leading innovations in this dispensation; this research describes the green synthesis of gold nanoparticles from Icacina trichantha, and some of its biomedical applications. The extract of Icacina trichantha served as the reducing/capping agents while the gold chloride solution served as the precursor, the reaction resulted in colloidal suspension formation after photo-activation. The colloidal suspension was characterized using UV-Vis spectroscopy, FTIR, EDX and SEM. The UV-Vis spectrum of the AuNPs displayed strong peak at 562 nm. The FTIR showed prominent peaks at 3425.69, 2928.04, 2362.88, 1763.00, 1635.69, 1384.94 and 1089.82 cm-1, these are attributed to the involvement of proteins in the AuNPs bio-fabrication and capping. Gold was the most occurring metal noted in the EDX analysis while the SEM micrograph of the nanoparticles showed sizes between 23.34 – 79.69nm.
The AuNPs showed antifungal activity of 64.1%, 75.9%, 70.6%, 72.6% and 77.1% against Fusarium solani,
Fusarium poae, Aspergillus niger, Aspergillus flavus and Penicillium avenatum respectively at 150 µl /ml. The AuNPs showed significant antioxidant properties of 78.11%, 79.43% and 81.56% at 50, 100, 150 and 200µl/ml against DPPH. The AuNPs showed a significant decrease in angiotensin converting enzyme (ACE) inhibitory activities as the concentration increased. The AuNPs showed angiotensin converting enzyme inhibitory activities of 44.94 ± 1.094, 40.14 ± 0.3604, 37.25 ± 0.06860 and 36.76 ± 0.03091% at concentration 50, 100, 150 and 200 µg/ml respectively. Conclusively, the AuNPs could be applied in fumigants production, and formulation of agents against oxidative stress. The nanoparticles also displayed anti-hypertensive activities and could be used as a therapeutic agent in the control of blood pressure.
Keywords: Gold Nanoparticles; Antioxidant; Antifungal; Anti-Hypertensive
References
- Sapana J., et al. “Green synthesis of nanoparticles using plant extracts: a review”. Environmental Chemistry Letters (2020).
- Singh T., et al. “Biosynthesized nanoparticles and its implications in agriculture”. In: Biological synthesis of nanoparticles and their applications. CRC Press (2019): 257-274.
- Oladipo IC and Ogunsona SB. “The Utilization of Agro-Waste: A Nanobiotechnology Point of View”. Recent Advances in Biological Research 5 (2019): 109-118.
- Lateef A., et al. “Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications”. Journal of Cluster Science5 (2016): 1561-1577.
- Shankar SS., et al. “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth”. Journal of Colloid and Interface Science (2004).
- Chandran SP., et al. “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract”. Biotechnology Progress (2006).
- Narayanan KB and Sakthivel N. “Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents”. Advances in Colloid and Interface Science 169 (2011): 59-79.
- Narayanan KB and Sakthivel N. “Coriander leaf mediated biosynthesis of gold nanoparticles”. Material Letter (2008).
- Song JY., et al. “Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts”. Process in Biochemistry (2009).
- Zhang YX., et al. “Biosynthesis of gold nanoparticles using chloroplasts”. International Journal of Nanomedicine (2011).
- Chun-Tao C., et al. “Icacina trichantha, A Tropical Medicinal Plant”. Natural Product Communications7 (2016): 1039-1042.
- Edori OS and Ekpete OA. “Phytochemical screening of aqueous extract of Icacina trichantha roots and its effect on mortality of wood termite”. World Journal of Pharmaceutical Research 4 (2015): 213-224.
- Otun KO., et al. “Chemical composition, antioxidant and antimicrobial potentials of Icacina trichantha oliv. leaf extracts”. International Journal of Tropical Medicine 10 (2015): 21-29.
- Samuel TA., et al. “Protective role of the methanolic extract of Icacina trichantha on sodium arsenite induced genotoxicity and hepatotoxicity”. Nigerian Quarterly Journal of Hospital Medicine 21 (2011): 262-266.
- Oke JM and Hamburger MO. “Screening of some Nigerian medicinal plants for antioxidant activity using 2,2-diphenyl-picryl-hydrazyl radical”. African Journal of Biomedical Research 5 (2002): 77-79.
- Udeh NE and Nwaehujor CO. “Antioxidant and hepatoprotective activities of ethyl acetate leaf extract of Icacina trichantha on paracetamol-induced liver damage in rats”. Continental Journal of Animal and Veterinary Research 3 (2011): 11-15.
- Timothy O., et al. “Cytotoxic and genotoxic properties of leaf extract of Icacina trichantha Oliv”. South African Journal of Botany 91 (2014): 71-74.
- Shagal MH and Kubmarawa D. “Antimicrobial and phytochemical screening of Icacina trichantha”. American Journal of Biomedical and Life Sciences 1 (2013): 37-40.
- Jimsheena A and Gowda A. “Angiotensin I-Converting Enzyme (ACE) inhibitory peptides derived from arachin by stimulated gastric juice”. Journal on Food Chemistry 2 (2010): 561-569.
- Oladipo IC., et al. “Characterization and biomedical application of phytosynthesized gold nanoparticles from Datura stramonium seed extract”. Journal IOP Conference Series: Materials Science and Engineering 1 (2020): 012021.
- Philip D. “Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2009).
- Abirami H., et al. “Synthesis of plant mediated gold nanoparticles using Azima tetracantha Lam. leaves extract and evaluation of their antimicrobial activities”. Pharmacognosy Journal5 (2016): 507-512.
- Mishra A., et al. “Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp”. Bioresource Technology 166 (2014): 235-242.
- Hamed AG., et al. “Synthesis of gold nanoparticles (AuNPs) using Ricinus communis leaf ethanol extract, their characterization, and biological applications”. Nanomaterial5 (2019): 765.
- Kouchmeshky A., et al. “Investigation of angiotensin converting enzyme inhibitory effects of medicinal plants used in traditional Persian medicine for treatment of hypertension, screening study”. Thrita Journal of Medical Sciences 1 (2012): 13-23.
- Sharifi N E., et al. “Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay”. DARU Journal of Pharmaceutical Sciences 21 (2013): 74.
- Hassani A., et al. “Preparation, antioxidant potential and angiotensin converting enzyme (ACE) inhibitory activity of gum arabic-stabilised magnesium orotate nanoparticle”. International Food Research Journal1 (2020): 150-159.
- Arockiya A., et al. “Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property”. Journal of Photochemistry and Photobiology B: Biology (2014).
- Ahmed A I and Jutta P. “Mycotoxins: Producing fungi and mechanisms of phytotoxicity”. Agriculture 3 (2015): 492-537.
- Travis R B and Felicia W. “Ochratoxin A and human health risk: A review of the evidence”. Critical Reviews in Food Science and Nutrition13 (2015): 1860-1869.
- Asogwa E U and Dongo L N. “Problems associated with pesticide usage and application in Nigerian cocoa production: a review”. African Journal of. Agricultural Research 8 (2009): 675-683.
Citation
Copyright