I Titus1, MY Iliyasu1*, MR Sahal1, RD Umar1, V Agbo A1, MM Wali1, S Ismail1, AF Umar1 and EB Agbo2
1Department of Biological Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria 2Department of Microbiology, Federal University of Health Sciences, Otukpo Benue State, Nigeria
*Corresponding Author: I Titus, Department of Biological Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
Received: April 06, 2023; Published: May 16, 2023
Background: Multi-drug resistance is on increase in clinical Salmonella typhi serovars and it is being aided by Integron that carry cassettes of resistance genes. The genetic characterization of antimicrobial resistance genes as well as their location and diversity is important in identifying factors involved in resistance, understanding the diversity of MDR strains, identifying genetic linkages among markers, understanding potential transfer mechanisms, and developing efficient detection methods
Design and Duration: This study was carried out on clinical isolates of Salmonella typhi isolated from selected hospitals within Bauchi Metropolis between January 2019 and February 2020. The study involves the collection of blood and stool specimens across all ages and gender between ages 0-70 years who present with fever and diarrhoea among other symptoms of typhoid in selected hospitals within Bauchi.
Aim: The aim of this research is to evaluate the molecular profile of class 1 Integron among multidrug-resistant Salmonella typhi from clinical specimens in selected health facilities within Bauchi metropolis.
Materials and Methods: Biodata was obtained and Phenotypic antibiotic susceptibility patterns of the isolates were determined using the Kirby Bauer disk diffusion method and screened for Multidrug resistance. Class 1 Integron and antibiotic resistance genes were detected using polymerase chain reaction and agarose gel electrophoresis.
Results: In this study, 37(77.0%) of S. typhi isolates were resistant to 2 or more antimicrobial agents (Multidrug resistance). Highest resistance was observed in Oxacillin 46(95.8%), Imipenem 44(91.6%), Novobiocin 41(85.4%), Erythromycin 40(83.3%), and Ampicillin 39(81.2%). The isolates were sensitive to Ciprofloxacin 31(64.5%), Colistin Sulphate 29(60.4%), and Ceftriaxone 28(58.3%). All isolates 48(100%) were Multidrug-resistant and sensitive to Ciprofloxacin, Colistin Sulphate, Ceftriaxone, and Amikacin. Class 1 integron gene was present in all isolates subjected to molecular analysis. All four resistant genes Tem-1, Sul-1, Gyr-A, and Cat-1, were detected in selected Multidrug-resistant isolates for this study. Class 1 Integron genes were detected in all the six (6) isolates used for molecular study which is indicative of their high frequency in Salmonella typhi strains. The presence of Class 1 integron is highly associated with MDR profile.
Conclusion: In this study, prevalence of class 1 integron among multidrug-resistant Salmonella typhi serovars was high. This shows that class 1 integron may likely be responsible for the dissemination of antibiotic resistance. Cephalosporin and fluoroquinolones remain drugs of choice in treating typhoid fever.
Keywords: Salmonella Serovars; Resistance Genes; Multi-Drug Resistance; Class 1 Integron
Citation: I Titus., et al. “Molecular Profiling of Class 1 Integron Among Multidrug-Resistant Salmonella Typhi Serovars Isolated from Hospitals in Bauchi". Acta Scientific Microbiology 6.6 (2023): 36-42.
Copyright: © 2023 I Titus., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.