Acta Scientific Microbiology (ISSN: 2581-3226)

Research Article Volume 5 Issue 12

In silico Analysis of the N-terminal Region of Lepidopteran Cadherins

Mendoza-Osorno A1,2, Olguín-Ruiz GE1, Sánchez-Vallejo CJ1, Pérez-Díaz JM3 and Guerrero GG4*

1Instituto Politécnico Nacional, Departamento de Bioquímica, Laboratorio de Genetica Molecular, CDMX, Mexico

2Universidad Nacional Autónoma de México, Facultad de Química, Programa de Licenciatura en Química, Circuito de Ciudad Universitaria, CDMX, Mexico

3Universidad Autónoma de Zacatecas, Campus II, Unidad Académica de Matemáticas, Zacatecas, Zacatecas, Mexico

4Universidad Autónoma de Zacatecas, Campus II, Unidad Académica de Ciencias Biológicas, Laboratorio de Inmunobiologia, Zacatecas, Zac, MX, Mexico

*Corresponding Author: Guerrero GG, Universidad Autónoma de Zacatecas, Campus II, Unidad Académica de Ciencias Biológicas, Laboratorio de Inmunobiologia, Zacatecas, Zac, MX, Mexico.

Received: November 02, 2022; Published: November 16, 2022

Abstract

Cadherins are distributed in metazoans. In vertebrates, the most common along with protocadherins are, the classical cadherins, type I and type II. In invertebrates, type III and IV ab cadherins. Here, we focused on the lepidopteran epithelial classical DE-cadherins because they function as a protein-like receptor of Bacillus thuringiensis Cry proteins. Alignment and blasting of protein sequences retrieved from NCBI and a phylogenetic tree was built. A common ancestor and several clades were formed among the different lepidopteran cadherins. The most common are Helicoverpa armigera and Spodoptera litura. Remarkably, lepidopteran cadherins (DE-Cad) from Spodoptera frugiperda (n = 20) matched human E-cadherins with an E value of 1.06 e-47 and a bit score of 177). This data indicate that genes that encode the classical cadherins, present in both, the epithelial midgut of lepidopterans (i.e. Spodoptera frugiperda) and/or the epithelial in mammals, are homologous (around 50%) in the N-terminal region ectodomains, including the conserved free-linkers calcium binding sites. This could have an impact in the diversity of the functionality of these proteins.

Keywords: Classical Cadherins; Vertebrates; Invertebrates; Arthropods; Lepidopteran; Bacillus thuringiensis; Cry Proteins

References

  1. Caccia S., et al. “The amazing complexity of insect midgut cells: types, pecularities, and functions”. Cell Tissue Research 377 (2019): 505-525.
  2. Guillot C and Lecuit T. “Mechanics of epithelial tissue homeostasis and morphogenesis”. Science 340 (2013): 1185-1189.
  3. Fahey B and Degnan BM. “Origin of animal epithelia: insight from the sponge genome”. Evolution and Development 1 (2010): 2601-2617.
  4. Oda H and Takeichi M. “Structural and functional diversity of cadherin at the adherens junction”. Journal of Cell Biology 193 (2011): 1137-1146.
  5. Harris TJC and Tepass U. “Adherens junctions: from molecules to morphogenesis”. Nature Reviews Molecular Cell Biology 11 (2010): 502-514.
  6. Oda H., et al. “Diversification of epithelial adherens junctions with independent reductive changes in cadherin form: identification of potential molecular synapomorphies among bilaterians”. Evolution and Development 7 (2005): 376-389.
  7. Takeich M. “Dynamics contacts: rearranging adherens junctions to drive epithelial remodeling”. Nature Reviews Molecular Cell Biology 15 (2014): 397-410.
  8. Klezovitch O and Vasioukhin V. “Cadherin, signaling: keeping cells in touch”. F1000 Research 4 (2015): 550.
  9. Leckband D and Prakasam A. “Mechanism and dynamics of cadherin adhesion”. Annual Review of Biomedical Engineering 8 (2006): 259-287.
  10. Yonemura S. “Cadherin-actin interactions at adherens junctions”. Current Opinion in Cell Biology 23 (2011): 515-522.
  11. Jaiganesh A., et al. “Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance”. Cold Spring Harbor Perspectives in Biology 10 (2018): a029280.
  12. Lecuit T and Yap AS. “E-cadherin junctions as active mechanical integrators in tissue dynamics”. Nature Cell Biology 17 (2015): 533-539.
  13. Hong S., et al. “Cadherin exits the junction by switching its adhesive bond”. The Journal of Cell Biology 192 (2011): 1073-1083.
  14. Vizirianakis JS., et al. “Dominant-negative E-cadherin alters adhesion and reverses contact inhibition of growth in breast carcinoma cells”. International Journal of Oncology 21 (2002): 135-144.
  15. Kaderbatcha ADM., et al. “Extracellular domains of E-cadherin determine key mechanical phenotypes of an epithelium through cell- and non-cell-autonomous outside-in signaling”. PLoS One 16 (2021):
  16. Kim NG., et al. “E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components”. Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 11930-11935.
  17. Nichols SA., et al. “Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/b-catenin complex”. Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 13046-13051.
  18. Gul IS., et al. “Evolution and diversity of cadherins and catenins”. Experimental Cell Research 358 (2017): 3-9.
  19. Hsu SN., et al. “Conserved alternative splicing and expression patterns of arthropod N-cadherin”. PLoS Genetics 5 (2009): e1000441.
  20. Yanekura S., et al. “Adhesive but not signaling activity of Drosophila N-cadherin is essential for target selection of photoreceptor afferents”. Developmental Biology 304 (2007): 759-770.
  21. Fabrick J., et al. “A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3A toxin”. Journal of Biological Chemistry 284 (2009): 18401-18410.
  22. Zhang H., et al. “Intra-and-extracellular domains of the Helicoverpa armiguera cadherin mediate Cry1Ac cytotoxicity”. Insect Biochemistry and Molecular Biology 86 (2017): 41-49.
  23. Sasaki M., et al. “Evolutionary origin of type IV classical cadherins in arthropods”. BMC Evolutionary Biology 17 (2017): 142-165.
  24. Hara H., et al. “A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae”. FEBS Letter 538 (2003): 29-34.
  25. Chen J., et al. “Aedes cadherin receptor that mediates Bacillus thuringiensis Cry11A toxicity is essential for mosquito development”. PLOS Neglected Tropical Diseases 14 (2020): e0007948.
  26. Lu Q., et al. “A fragment of cadherin-like protein enhances Bacillus thuringiensis Cry1B and Cry1C toxicity to Spodoptera exigua (Lepidoptera: Noctuidae)”. Journal of Integrative Agriculture 11 (2012): 628-638.
  27. Contreras E., et al. “Sodium solute symporter and cadherin proteins act as Bacillus thuringiensis Cry3Ba toxin functional receptor in Tribolium castancum”. Journal of Biological Chemistry 288 (2013): 18013-18021.
  28. Pigott CR and Ellar DJ. “Role of receptors in Bacillus thuringiensis crystal toxin activity”. Microbiology and Molecular Biology Reviews 71 (2007): 255-281.
  29. Adang MJ., et al. “Diversity of Bacillus thuringiensis crystal toxins and mechanism of action”. Advances in Insect Physiology 47 (2014): 39-87.
  30. Jurat-Fuentes JL., et al. “The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens”. Biochemistry 43 (2004): 14299-14305.
  31. Xu X., et al. “Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endoxtin of Bacillus thuringiensis in Helicoverpa armiguera”. Applied and Environmental Microbiology 71 (2005): 946-954.
  32. Nishiguchi S., et al. “Divergence of structural strategies for homophilic E-cadherin binding among bilaterians”. Journal of Cell Science 129 (2016): 3309-3319.
  33. Altachul SF., et al. “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”. Nucleic Acids Research 25 (1997): 3389-3402.
  34. Aravind Madden TI., et al. “Improving the accuracy of PSI-BLAST protein datrabase searches with composition-based statistics and other refinements”. Nucleic Acids Research 29 (2001): 2994-3005.
  35. Prakasam A., et al. “Calcium site mutations in cadherin: impact on adhesion and evidence of cooperativity”. Biochemistry 45 (2006): 6930-6939.
  36. Mountoufaris G., et al. “Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly”. Annual Review of Cell and Developmental Biology 34 (2018): 471-493.
  37. Chen WV and Maniatis T. “Clustered protocadherins”. Development 140 (2013): 3297-3302.
  38. Weisherg VCH and Maniatis T. “Clustered Protocadherins”. Development 140 (2013): 3297-32302.
  39. Du L., et al. “Cadherin CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in Chilo suppressalis”. Science Reports 9 (2019): 8507-8522.
  40. Zhao J., et al. “Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera”. Insect Biochemistry and Molecular Biology 40 (2010): 113-118.
  41. Mengoud J., et al. “E-cadherin is the receptor for internalin, a surface protein required for entry of monocytogenes into epithelial cells”. Cell 22.84 (1996): 923-932.
  42. Anderton JM., et al. “E-cadherin is a receptor for the common protein pneumococcal surface antigens A (PlsA) of Streptoccous pneumonia”. Microbial Pathogenesis 42 (2007): 225-236.
  43. Phan QT., et al. “Als3 is a Candida albicans invasion that binds to cadherins and induces endocytosis by host cells”. PLoS Biology 5 (20017): e64.
  44. Finn RD., et al. “Pfam: the protein families database”. Nucleic Acids Research 42 (2014): D222-D230.

Citation

Citation: Guerrero GG., et al.In silico Analysis of the N-terminal Region of Lepidopteran Cadherins". Acta Scientific Microbiology 5.12 (2022): 43-55a.

Copyright

Copyright: © 2022 Guerrero GG., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate30%
Acceptance to publication20-30 days

Indexed In






News and Events


  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is February 15, 2023.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of “Best Article of the Issue”.
  • Welcoming Article Submission
    Acta Scientific delightfully welcomes active researchers for submission of articles towards the upcoming issue of respective journals.
  • Contact US