Study In Silico Pigment Derivative Compounds Monascus sp. As Anticorona Virus Candidates
Resha Resmawati Shaleha, Anna Yuliana* and Septian Dwi Mulyana
Department of Pharmacochemistry, Tasikmalaya School of Pharmacy BTH, Tasikmalaya, Indonesia
*Corresponding Author: Anna Yuliana, Department of Pharmacochemistry, Tasikmalaya School of Pharmacy BTH, Tasikmalaya, Indonesia.
Received:
August 26, 2022; Published: September 30, 2022
Abstract
Background: Corona Virus is biggest family of viruses with causes of illness ranging from mild to severe symptoms. Monascus sp. is used to ferment which has the potential as a Nutraceutical. Studies on Monascus sp. developing rapidly, including the discovery of new pigments, namely 57 derivatives of the pigment Monascus sp. Codes 5LHD and 6VW1 were used as anticoronavirus receptors.
Material and Methods: Ols and SwissDock and then validated by performing Molecular Dynamic. The final conformational results were then visualized using the Biovia Discovery studio, analyzed the effectiveness of the docking program, pharmacokinetics, toxicity, and dynamic programming using the Ramachandran plot.
Results: analysis showed that the compounds derived from Monascus sp. On average it has a small binding affinity value, but the Monankarin E compound has a so good binding affinity value (5LHD: -8.7). Conclusion: Monankarin E from the pigment derivative Monascus sp. can provide good potential to use as a candidate for the anticorona virus.
Keywords: Pigment Monascus sp.; Anticorona Virus; in Silico
References
- Davies PDO. “Multi-drug resistant tuberculosis”. CPD Infection1 (2020): 9-12.
- RI KK. “Pedoman Kesiapsiagaan Menghadapi Infeksi COVID-19”. Kementerian Kesehatan Republik Indonesia 75 (2020).
- “WHO Coronavirus Disease (COVID-19) Dashboard”. Indoneisa (2020).
- Yuliana A., et al. “Derivates of azaphilone Monascus pigments”. Biocatalysis and Agricultural Biotechnology 9 (2017): 183-194.
- “Molecular docking empat turunan isonicotinohydrazide pada mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA)”. Jurnal Kesehatan Bakti Tunas Husada Jurnal Ilmu-ilmu Keperawatan Analis Kesehatan dan Farmasi 13.1 (2015): 135-141.
- Ruswanto R., et al. “Sintesis Dan Studi in Silico Senyawa 3-Nitro-N’-. (Pyridin-4-Yl) Carbonyl]Benzohydrazide Sebagai Kandidat Antituberkulosis”. Chimica et Natura Acta2 (2015).
- Rastini MBO., et al. “Molecular Docking Aktivitas Antikanker Dari Kuersetin Terhadap Kanker Payudara Secara in Silico”. J Kim 180 (2019).
- Moe M. “Molecular Operating a environment” 8 (2019): 99-117.
- Abdullah M., et al. “The effect of ethanolic leaves extract of soursop (Annona muricata) on human colorectal cancer cell line: cell viability and in silico study to cyclin D1 protein”. Health Science Journal of Indonesia 10.2 (2019): 96-102.
- Ruswanto R. “Desain dan studi interaksi senyawa n’- (3,5-dinitrobenzoyl)-isonicotinohydrazide pada mycobacterium tuberculosis enoyl-acyl carrier protein reductase”. Jurnal Kesehatan Bakti Tunas Husada Jurnal Ilmu-ilmu Keperawatan Analis Kesehatan dan Farmasi1 (2015): 1-7.
- B Fernandes T., et al. “Analysis of the Applicability and Use of Lipinski`s Rule for Central Nervous System Drugs”. Letters in Drug Design and Discovery10 (2016): 999-1006.
- “Prediksi Senyawa Bioaktif dari Tanaman Sanrego (Lunasia amara Blanco) sebagai Inhibitor Enzim Siklooksigenase-2 (COX-2) melalui Pendekatan Molecular Docking”. 1 (2018): 6-11.
- Sulastri S., et al. “Studi In Silico Senyawa Turunan Flavonoid terhadap Enzim HMG- CoA Reduktase”. Jurnal Mahasiswa Farmasi Fakultas Kedokteran UNTAN 1 (2019).
- Noviardi H and Fachrurrazie F. “Potensi Senyawa Bullatalisin Sebagai Inhibitor Protein Leukotrien a4 Hidrolase Pada Kanker Kolon Secara in Silico”. FITOFARMAKA Jurnal Ilmiah Farmasi2 (2015): 65-73.
- Cramer GM., et al. “Estimation of toxic hazard-A decision tree approach”. Food and Cosmetics Toxicology 3 (1976): 255-276.
- Lapenna S and Worth A. “EUR 24898 EN - Joint Research Centre - Institute for Health and Consumer Protection: Analysis of the Cramer classification scheme for oral systemic toxicity-implications for its implementation in Toxtree”. JRC Scientific and Technical Reports (2011): 39.
- Kroes R., et al. “Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet”. Food and Chemical Toxicology1 (2004): 65-83.
- Benigni R., et al. “The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - a module of Toxtree”. Heal San Fr (2008).
- Saputra DPD. “Molecular Docking Sianidin dan Peonidin sebagai Antiinflamasi pada Aterosklerosis Secara In Silico”. Jurnal Farmasi Udayana1 (2018): 28.
- Aziz FK., et al. “Hasil In Silico Senyawa Z12501572, Z00321025, SCB5631028 dan SCB13970547 dibandingkan Turunan Zerumbon terhadap Human Liver Glycogen Phosphorylase (1l5Q) sebagai Antidiabetes”. J Kim Val2 (2016): 120-124.
- Arwansyah Ambarsari L and Sumaryada TI. “Simulasi Docking Senyawa Kurkumin Dan Analognya Sebagai Inhibitor Enzim 12-Lipoksigenase”. Current Biochemistry 1 (2014): 36-39.
- Saputri KE., et al. “Docking Molekular Potensi Anti Diabetes Melitus Tipe 2 Turunan Zerumbon Sebagai Inhibitor Aldosa Reduktase Dengan Autodock-Vina”. Clinica Chimica Acta 1 (2016): 16.
- Pantsar T and Poso A. “Binding affinity via docking: Fact and fiction”. Molecules 8 (2018): 1DUMMY.
- Dewi RT., et al. “The Applicability of the Crystal Structure of Termotoga Maritima 4- Α - Glucanotransferase As the Template for Sulochrin As Α -Glucosidase”. Indonesian Journal of Chemistry 3 (2009): 487-490.
- Maier JKX and Labute P. “Assessment of fully automated antibody homology modeling protocols in molecular operating environment”. Proteins: Structure, Function, and Bioinformatics 8 (2014): 1599-1610.
- Ho BK and Brasseur R. “The Ramachandran plots of glycine and pre-proline”. BMC Structural Biology 5 (2005): 1-11.
- Suhadi A., et al. “Simulasi Docking Senyawa Aktif Daun Binahong Sebagai Inhibitor Enzyme Aldose Reductase”. Jurnal Penelitian Kesehatan 2 (2019): 55-65.
Citation
Copyright