Madhurya V Murthy1,2, Dakshahini Balan1,2, Nur Jannah Kamarudin1,2, Victor CC Wang1,2, Xue Ting Tan1,2, Avettra Ramesh1,2, Shermaine SM Chew1,2, Nikita V Yablochkin1,2, Karthiga Mathivanan1,2 and Maurice HT Ling1,2,3*
1Department of Applied Sciences, Northumbria University, United Kingdom
2School of Life Sciences, Management Development Institute of Singapore, Singapore
3HOHY PTE LTD, Singapore
*Corresponding Author: Maurice HT Ling, School of Life Sciences, Management Development Institute of Singapore, Singapore.
Received: August 01, 2020; Published: September 16, 2020
Mathematical models of metabolism can be a useful tool for metabolic engineering. Genome-scale models (GSMs) and kinetic models (KMs) are the two main types of models. GSMs provide steady-state fluxes while KMs provide time-course profile of metabolites, which has more advantage in identifying metabolic bottlenecks. However, KMs require greater degree of accuracy for parameters than GSMs resulting in fewer large-scale KMs than GSMs. Recently, large-scale KMs have been developed but are not based on standard enzymatic rate equations resulting in difficulty in interpreting results in terms of enzyme kinetics. Here, we construct a universal, non-species-specific KM of core metabolism, based on Michaelis-Menten Equation, from glucose to the 20 amino acids and 5 nucleotides based on reactions listed in Kyoto Encyclopaedia of Genes and Genomes (KEGG). Non-species specificity is achieved by using the same Michaelis-Menten constant (Km), turnover number (Vmax), and concentration for each metabolite and enzyme for each equation. This forms a base model for developing species-specific whole cell KMs. The resulting model consists of 566 reactions, 306 metabolites, and 310 enzymes, involving in 1284 metabolite productions, and 1249 metabolite usages. Sensitivity analysis shows that 85% of the metabolite concentration changes with the change of one enzyme kinetic parameter. This forms a base model for developing species-specific whole cell KMs.
Keywords: Kyoto Encyclopaedia of Genes and Genomes (KEGG); Turnover Number; Kinetic Models
Citation: Maurice HT Ling., et al. “UniKin1: A Universal, Non-Species-Specific Whole Cell Kinetic Model". Acta Scientific Microbiology 3.10 (2020): 04-08.
Copyright: © 2020 Maurice HT Ling., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.