Daniela L Delgado-Lara1, José J Hernández-Cruz1,2, Luís A Romero- Tirado2, Rolando Roméro-Dávalos2, José J Hernández-Andalón2, Irma E Velázquez-Brizue1 and Genaro Gabriel Ortiz1*
1Department of Philosophical and Methodological Disciplines, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
2Laboratories BioSim©; Scientific Research and Development Area, MXCD, Mexico
*Corresponding Author: Genaro Gabriel Ortiz, Department of Philosophical and Methodological Disciplines, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.
Received: April 15, 2020; Published: May 21, 2020
The term septic shock or septicemia were considered analogous to endotoxic shock or endotoxicosis and used to designate the state of acute metabolic-circulatory dysfunction, which is trigger after the release into the body of bacterial endotoxins, secondary to an initial septic process, or subsequent to experimental administration of isolated endotoxins, respectively. Despite the extensive use of the term "septic shock" in clinical and preclinical studies to refer to this pathological state, we will now refer to this state only as sepsis or LPS-induced sepsis as appropriate. Experimental animal models treated with isolated bacterial endotoxins replicates many of the hematologic, hemodynamic, and metabolic abnormalities characteristic of patients with bacterial infections that trigger shock. Endotoxins are macromolecular complexes made up of lipopolysaccharides (LPS) and proteins located on the outer membrane of Gram-negative bacteria. The main pro-inflammatory cytokines are tumor necrosis factor-alpha, interleukin 1, interleukin 6 and interleukin 8. The expression of these cytokines is responsible for many of the clinical effects and lesions observed in LPS-induced sepsis. LPS is a potent "stimulator" of the immune response, inducing cytokine production in macrophages and B-cells. The present work aimed to study the effect of Nutrisim© on inflammation in an in vivo model of sepsis-induced by Escherichia coli 0111: B4 lipopolysaccharide. We found that the nutritive supplement NutriSim has shown a decrease in pro-inflammatory cytokines and even a protective effect against LPS. Further clinical research has to be made.
Keywords: NutriSim©; Lipopolysaccharides; Inflammation; Endotoxic Shock
Citation: Genaro Gabriel Ortiz., et al. “Analysis of the Protective Effect of NutriSim© and the Inflammatory Response in a Model of LPS-Induced Shock from E. coli Serotype 0111:B4". Acta Scientific Microbiology 3.6 (2020): 90-99.
Copyright: © 2020 Genaro Gabriel Ortiz., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.