Bassirou Mahamadou Harouna1,2* and Othmane Benkortbi1
1Industrial Process Engineering and Control Analysis Laboratory (GEPICA), Ecole
des Hautes Etudes en Génie de l’Eau, des Procédés Industriels et de l’Environnement
(HEGEPRINE), Niamey, Niger
2Laboratory of Biomaterials and Transport Phenomena (LBMPT), Department of
Engineering Process and Environment. Faculty of Technology, University Dr Yahia Fares
of Medea - Algeria, Algeria
*Corresponding Author: Bassirou Mahamadou Harouna, Industrial Process Engineering and Control Analysis Laboratory (GEPICA), Ecole des Hautes Etudes en Génie de l’Eau, des Procédés Industriels et de l’Environnement (HEGEPRINE), Niamey, Niger and Laboratory of Biomaterials and Transport Phenomena (LBMPT), Department of Engineering Process and Environment. Faculty of Technology, University Dr Yahia Fares of Medea - Algeria, Algeria.
Received: February 27, 2020; Published: April 13, 2020
The objective assigned to this study is the optimization of azote nutriment source for the microbial bioremediation to contribute to the fight against environmental pollution through the production of biosurfactants of multidisciplinary interest. This study consists in metabolizing hydrocarbons into biosurfactants using Pseudomonas aeruginosa ATCC 27853 strain in order to control the environmental threat in a batch of 250 ml at 37°C for 48 hours of culture. The optimization tests of nitrogen source showed that within a range of concentration [1 - 8] g/l, the optimum value was 4 g/l for KNO3 with an emulsification index EI24 = 71.45% and an optical density DOX = 0.55 for 46h of culture. The yields obtained Yx/s and Yp/s were of 60.00% and 32.17% respectively with an amount of biosurfactants P = 580 mg, a bioconversion rate θ = 78.47% and a ratio N/C = 0.473. The comparative study between two nitrogen sources such as KNO3 and NH4NO3 for a range of concentration [3 - 4] g/l demonstrated that the best source of nitrogen remains KNO3. Indeed, the kinetic monitoring of the biomass growth, the emulsification index, the biosurfactants productivity and the substrates consumption revealed the inhibition of the strain by NH4NO3 after 7 hours of incubation, provoking the degeneration of the strain and slowing the removal of pollutants process. A similar study of NH4NO3 at a concentration of 4 g/l resulted in an emulsification index EI24 = 65.22%, a yields Yx/s = 18.37% and Yp/s = 45.17% and a bioconversion rate θ = 57.36%. The amount of the biosurfactants measured at P = 590 mg for an N/C ratio of 0.739. In fact, the results of this study demonstrated that KNO3 promotes the growth of biomass as well as the production of biosurfactants who play a major role in the enrichment of the soil by solubilizing the toxic elements and a maximum removal of hydrocarbons following diauxic phenomena.
Keywords: Pollution; Environment; Bioremediation; Biosurfactants; Optimization
Citation: Bassirou Mahamadou Harouna and Othmane Benkortbi. “Optimization of Diauxienne Growth of Pseudomonas aeruginosa in the Bioremediation of Soils Polluted by Hydrocarbons". Acta Scientific Microbiology 3.4 (2020): 233-238.
Copyright: © 2020 Bassirou Mahamadou Harouna and Othmane Benkortbi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.