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  Luminal glucosidase inhibitors and GLP-1 agents (incretins) bring about similar, dose-related improvements in post-prandial gly-
cemic and insulinogenic responses to ingested carbohydrates in man and animals. The metabolic improvements are likely due to 
the combined physiological effects of both decreasing the rate of gastric emptying and subsequent delays in carbohydrate digestion 
and luminal glucose uptake, combined with modest decreases in caloric intake with both therapeutic regimens. The combined im-
pact of the above ultimately results in decreases in insulinogenic responses and improved insulin sensitivity in peripheral tissues. 
Both therapeutic approaches result in an approximate 15% decrease in daily caloric intake and decreases in plasma insulin and 
improved plasma lipid profiles, in a manner that is somewhat analogous to the consumption of a higher fiber, low glycemic index, 
and complex carbohydrate diet. While the duration of the GLP-1 approach may prove to be therapeutically effective for only a lim-
ited duration often of one year or less, dietary approaches to control caloric intake including glucosidase inhibitors typically may 
be continued indefinitely and with minimal risk of long-term adverse or rebound effects. Thus, the combination of GLP-1 (incretin) 
agonists, α-glucosidase inhibitors, and dietary and lifestyle interventions as monotherapy or combined therapy may prove to be use-
ful adjuncts in addressing the global burgeoning problems linked to obesity, T2DM and insulin-resistant states in man and animals.
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Introduction

The prevalence of obesity and overweight conditions and their 
common comorbidities are now approaching epidemic propor-
tions, affecting one third or more of the adult population of in-
dustrialized nations [1-3]. The investigation of incretin hormone 
agents for the potential treatment of obesity and adult onset (Type 
2; T2DM) diabetes over the past several decades has resulted in 
the development of several GLP-1 agents now known to be thera-
peutically effective in curbing the glycemic responses to meals and 
decreasing the magnitude of adiposity in obese and obese+T2DM 
states [4-7]. The beneficial glycemic effects have been deemed to 
result from delaying the rate of gastric emptying, thereby modulat-
ing the entry of carbohydrates into the upper regions of the small 
intestine, where the majority of starch digestion typically occurs 
[5-8]. In addition, the rate-limiting stage of luminal glucose absorp-
tion into the peripheral circulation closely parallels the Km of the 
digestive process, with the anticipated result of decreasing the rate 

and magnitude of the glycemic response, with corresponding ame-
lioration in the post prandial insulinogenic responses. The physio-
logical mechanism of gastric emptying is a complex process, involv-
ing hormonal, digestive, osmotic, and physicochemical components 
[9-12]. Dietary factors including gums, complex fibers, minerals, 
simple vs complex carbohydrates, and a large spectrum of phyto-
chemical constituents commonly found in fruits and vegetables 
may impede the efficiency of the brush border enzymatic process-
es, resulting in variations in the postprandial glycemic responses 
observed. As the digestive residual transits down the gastrointes-
tinal tract, numerous gut peptides and incretin hormones are re-
leased from the duodenal epithelium that contribute to both satiety 
and the continuation of the digestive process [9,10]. The elevations 
in glycemic responses also result in elevations in the percent of gly-
cated hemoglobin in circulation, Glycated hemoglobin contributes 
to pathophysiologic actions in vascular tissues and their support-
ing structures [2,7,8]. Because Glycation results in movement of the 
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hemoglobin saturation curve to the left, it impedes the release of 
oxygen from the hemoglobin moiety, and contributes to a state of 
relative hypoxia in erythrocytes and their supported tissues [11]. 
Hypoxia is a contributor to formation of inflammatory highly reac-
tive oxygen species (iROS) and generation of pathophysiologically 
damaging free radicals and membrane damage within the affected 
erythrocytes and other tissues [12]. The membrane damage con-
tributes to an increased propensity for erythrocyte aggregation, an 
increase in the blood viscosity and in impaired peripheral blood 
flow, thereby impeding efficient oxygen delivery. 

The peptide hormone amylin is co-secreted with insulin and 
normally impacts receptor domains located on the antrum of the 
stomach, to bring about a gated, dose related response in the rate 
of gastric emptying, [13,14] while the incretin hormones GLP (Glu-
cagon-like peptide, i.e., the satiety hormone) and the gastric inhibi-
tory peptide GIP) are released from the intestinal tissues after food 
ingestion [5]. Both amylin and incretin hormones ultimately exert 
satiating effects on appetite and food intake, which contribute to 
the culmination of their metabolic actions in peripheral tissues [4-
8]. Both GLP and GIP release from the intestine following ingestion 
of glucose other nutrients facilitate the stimulation of insulin secre-
tion from pancreatic β cells. Incretins GIP and GLP‐1 initiate their 
hormonal effects by binding to specific receptors (the GIP receptor, 
GIPR, and the GLP‐1 receptor (GLP‐1R) [15]. Both hormones are 
members of the coupled guanosine linked G-protein family, which 
activate intracellular processes attributed to the incretin mediated 
functions [15]. GLP-1 agonists alone or in combination with GIP 
agonists result in a sustained decrease in appetite, and an approxi-
mate 15% decrease in ad libitum energy intake [4]. The decreases 
in daily energy intake contributes to a gradual weight loss and ac-
companying improvements in plasma lipid profiles and other in-
sulinogenic actions. Because of the gradual nature of weight loss, 
the improvements in the BMI and the associated comorbidities 
are often more lasting than other dietary approaches to weight 
management, possibly do to secondary neurologic actions on the 
hypothalamic ventromedial nucleus, the primary controller of ap-
petite [4-6,9]. Upon stimulation by incretins, the satiety center 
transcends a sensation of fullness and gastric/gastrointestinal 
satiation thus the combined gastric and CNS effects limit further 
voluntary food ingestion for several hours, independent of macro-
nutrient composition of the dietary selections [9,10,12].

The actions of the so-called orally administered ‘starch block-
ers’ exert complementary effects on food intake to those discussed 
above, albeit via a different physiological mechanism. Rather than 
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slowing the transit of nutriments from the antrum to the duodenum 
as above, α-glucosidase inhibitors delay the rate of carbohydrate 
digestion of starches and sucrose at the level of the brush border 
enzymes via competitive inhibition, thereby slowing the rate of 
post-digestion luminal glucose uptake [8,16]. Since the digestive 
actions resulting in monosaccharide generation represent the de 
facto rate-limiting step in luminal glucose uptake, the end result on 
glycemic excursions and their insulinotropic sequela are similar to 
those following GLP-1 or GIP incretin agonist agents [15,16]. The 
physicochemical effects of the delayed digestive activity following 
α-glucosidase inhibition transiently increases the osmotic pressure 
and luminal distention, which collectively contribute to a curbing 
in appetite that is qualitatively similar to that which occurs with 
the incretin agents [15,16]. In animal studies, administration of 
α-glucosidase inhibitors was also found to decrease the hepatic 
activities of glucokinase, malic enzyme, and glucose-6-phosphate 
dehydrogenase, key mediators of glycogenic and lipogenic actions. 
Adiposity and weight gain were modestly decreased, and plasma 
glucose, insulin, triglyceride and cholesterol fractions were also im-
proved after 8 weeks of treatment [15-18]. Regardless of the mech-
anism of action that results in decreases in the glycemic response 
to carbohydrate feeding, the improved insulin sensitivity results in 
improvements in glucose uptake in peripheral tissues as a result of 
improved efficiency of glucose transporter (GLUT4) actions, with 
beneficial impacts on cellular energy and substrate metabolism 
[19,20]. 

Disregarding differential factors, the ease of oral administration 
of the α-glucosidase inhibitors vs. the subcutaneous administration 
of the incretin agonists may contribute to improved compliance, 
in addition to potentially pathophysiologic adverse effects of pro-
longed incretin therapy [6,7]. The α-glucosidase inhibitors exert 
their actions via luminal brush border competitive inhibition, thus 
the most common adverse effects of glucosidase inhibitors consist 
of mild gastrointestinal distress symptoms due to actions of the 
colonic microbiota on undigested carbohydrate residues and are 
easily remedied by adjustments to the dosages or formulae of the 
α-glucosidase agent being administered [16,18,19]. Of the two most 
common agents, acarbose does not undergo significant intestinal 
absorption, thereby potentially prolonging the duration of luminal 
transit, and simple overdosing may give rise to gastrointestinal dis-
tress as the undigested starches generate acid and gas via intestinal 
microbiota actions [11,12,21-25]. In contrast, miglitol undergoes 
complete luminal absorption in the small intestine soon after in-
gestion typically within two hours of ingestion and undergoes renal 
excretion without further metabolism in the liver or other tissues. 
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The rapid metabolic clearance thereby limits the duration of ac-
tion, and minimizing the potential for adverse complications while 
facilitating a similar magnitude of antiglycemic and antilipogenic 
actions [21-23]. The effects of α-glucosidase inhibitors on intesti-
nal release of incretins in clinical settings are variable, as are the 
are the effects on the VMH satiety centers [10]. The luminal agents 
are associated with a similar magnitude of appetite suppression to 
those of the incretin agents, equivalent to an approximate 15 per-
cent reduction in caloric intake that is sustained throughout the 
duration of pharmacologic administration [5,14,17,25,26]. While 
most clinical trials of inhibitors of α-glucosidase inhibitors have 
reported their effects in T2DM, Nagai., et al. (2011) also reported 
increases in GLP-1 and decreases in GIP following miglitol admin-
istration in Type 1 DM, in addition to decreases in Hemoglobin 
A1c and improved glycemic responses to an oral glucose tolerance, 
thus broadening the clinical applications for this class of antidia-
betic agents [25]. Modest improvements on plasma lipid profiles 
and body mass index have also been reported in clinical studies 
with α-glucosidase inhibitors [26]. In animal studies with obese-
T2DM rats, Tulp and Rizvi (2025) reported that following 8 weeks 
of dietary treatment with miglitol, in vitro activities of hepatic 
lipogenic and glycemic enzymes were decreased in liver homog-
enates, in association with decreases in the magnitude of adipos-
ity and weight gain, compared to similarly fed untreated littermate 
controls [17,18]. The glycemic response to an oral glucose toler-
ance, and the AUC for both glucose and insulin were significantly 
decreased, toward those of non-obese littermates. While assess-
ment of VMH nucleus have not been obtained in those studies, the 
15% decrease in energy intake was of similar magnitude to clinical 
studies with incretin agonists reported elsewhere, suggestive of 
GLP-modulating both luminal and central effects with the luminal 
miglitol therapy in that study. In contrast, the effects of miglitol in 
similarly fed obese, non-diabetic animals were associated with sig-
nificant improvements in glycemic parameters, while only modest 
improvements in hepatic enzymes and adiposity were observed 
[8,9,17,18]. In all studies, as glycemic control improves, glycated 
hemoglobin concentrations also decrease, thereby improving oxy-
gen delivery to peripheral tissues [33].

Conclusions
The metabolic effects of the incretin hormones and luminal 

α-glucosidase inhibitors on glycemic parameters result in im-
provements of similar magnitude in glycemic responses in man 
and animals. In addition, the effects of the agents on food and en-
ergy intake were also of similar magnitude, while the impact of the 
agents on adiposity and weight gain or loss were variable in ani-

mals and clinical studies. The appetite control center is located in 
the ventromedical hypothalamus; the VMH nucleus when damaged 
or dysregulated can result in hyperphagia, aggravation of glycemic 
parameters, and excess weight gain which may progress to T2DM 
in genetically susceptible individuals and animals [10,27-31]. In 
addition, the gastrointestinal hormone ghrelin also contributes to 
energy balance by stimulating appetite during fasting or food re-
striction, thereby contributing to energy balance. Ghrelin signals 
the appetite center in the hypothalamus to initiate food ingestion 
behaviour, food selection preferences, and other sensory functions 
that impact on feeding reward activities. Thus it is of interest in an-
ti-obesity and diabetes therapy [31]. Ghrelin also stimulates the re-
lease of growth hormone (somatotrophin), with secondary effects 
on lipid storage and substrate metabolism in adipose tissue and 
other tissues in addition to its long-known effects on growth and 
development during early life and in maintaining nitrogen balance 
via anabolic actions throughout much of the lifespan. Additional 
studies suggest that ghrelin may also influence learning and mem-
ory in the hippocampus, where it enhances hippocampal neuronal 
interconnections. Additionally, it may have a contributory role in 
gut motility, gastric acid secretion, and even cardiovascular health 
[10,31,32].  Thus, in conclusion the combined effects of incretins, 
α-glucosidase inhibitors, diet and lifestyle factors can contribute to 
improvements in key glycemic parameters via centrally and tissue 
mediated actions. As an added benefit, as glycemic status improves, 
the proportion of glycated hemoglobin also decreases toward eug-
lycemic status, thereby improving the efficiency of oxygen delivery 
to peripheral tissues [33]. Dysregulation of gastric emptying is a 
common observation in diabetes, consistent with impaired hor-
monal actions on gastric emptying, resulting in accelerated transit 
and luminal digestion of the partially digested meals to the duode-
num. Both incretins and α-glucosidase address the disordered di-
gestive processes, albeit by different but complimentary and likely 
additive mechanisms, resulting in comparable reductions in energy 
intake, and postprandial glycemic, insulinemic and metabolic re-
sponses in man and animals.
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