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Abstract
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Horticulture is an essential addition to the growth in the economy of any nation. In light of increasing populations, fluctuating 
environmental variables, and finite resources, meeting the dietary needs of the current populace has become an increasingly difficult 
endeavour. Horticulture has recently transitioned from an input-intensive to a knowledge-intensive sector due to the fact that vast 
quantities of information related to Horticulture can be preserved, shared, and examined to generate insights. An in-depth review 
of advancements in the swiftly progressing domain of deep learning is offered. Cognitive Horticulture, also referred to as precision 
Horticulture, has surfaced as a novel approach to tackle modern hurdles in Horticulture sustainability. Deep Learning is the process 
by which this cutting-edge technology operates. It imparts learning capability to the machine that doesn’t need explicit programming. 
A key component of the impending Horticulture revolution is DL and Connectivity of Things (IoT)-enabled Horticulture gear. It is 
suggested that an article be written that offers a thorough analysis of machine learning’s applications in Horticulture. The primary 
areas of research are agricultural yield prediction, disease and weed detection in crops, species identification, and prediction of soil 
parameters including moisture content and biological matter. This article provides a thorough analysis of the literature on the use of 
machine learning to horticultural production systems.
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Introduction

The Horticulture sector is fundamental to the worldwide 
financial system. As the human population continues to grow, 
there will be an added burden on the Horticulture system. Agri-
technology and precision gardening, which are presently referred to 
as digital Horticulture, are emerging areas of science that leverage 
data-intensive techniques to improve Horticulture output while 
reducing ecology repercussions [1]. A multitude of sensors produce 
the data utilised in contemporary Horticulture processes. This 
understanding makes it easier to understand both the procedure 
itself (machinery information) and how it operates (varying crop, 
soil, and temperatures). Decisions taken in Horticulture are thus 
carried out more quickly and with higher levels of accuracy.

With the introduction of Machine Learning (ML), big data, 
or computing with high performance, new opportunities have 
emerged for understanding, measuring, and interpreting 
knowledge-intensive operations in Horticulture operational 
environments. One of the applications of machine learning (ML) as 
a scientific field is that it allows computers to learn without explicit 
programming. Biotechnology is among the many scientific fields 
where machine learning is being used more and more.

Application findings in the fields of Horticulture are expected 
to proliferate due to the expanding simplicity of use and success 
of deep learning in other domains. This review’s structure is 
determined by three categories of suggestions in an effort to 
provide direction for similar works

•	 By implementing deep learning: This article aims to 
provide an overview of object detection frameworks, a 
foundational understanding of machine perception concepts 
and terminology, and a critique of deep learning-based fruit 
detection approaches [2]. It is possible to trace the evolution 
of frameworks and detectors over the past few years, during 
which detecting speed as well as precision have increased 
significantly.

•	 Sets of common images: Annotated picture datasets 
that are publicly available, such as ImageNet, Microsoft’s 
Common Objects in Contextual (COCO), and the PASCAL 
Visual Objects Class (PASCAL VOC), have shown advantages 
for deep learning. The data sets, which include hundreds 
of popular item classes and millions of photos, are made 

accessible to programmers for the use of model training and 
algorithm evaluation in object recognition. Regretfully, there 
are no pictures of landscapes in those data sets.

•	 Orchard produce projection: Considerable scholarly effort 
has been dedicated to enhancing the precision of algorithms 
designed to determine the number of fruits present in 
images of canopy of trees. There have been fewer reports of 
efforts to establish a correlation between image fruit counts 
and the actual produce of an orchards block. Consequently, 
methods for addressing the problem of occluded produce 
are investigated as well.

CNN and Deep Learning: A Review

Convolutional Networking (convNets) are extensively employed 
in image processing tasks due to their capability of acquiring 
translationally invariant patterns, which enables the detection of 
objects irrespective of their location within an image, and their 
capability to extract intricate visual concepts via the detection of 
a hierarchical structure of progressively complicated patterns [3].

Machine learning presents enormous potential as a data 
processing instrument. Nevertheless, conventional approaches 
to machine learning frequently require the manual extraction 
of features. As the number of enormous datasets has grown and 
Graphic Processing Units (GPUs) have become more prevalent, 
algorithmic techniques and strategies have been continuously 
enhanced [4]. By integrating “further” (more complex) structures 
into models to robotize extricating highlights from natural 
information, profound learning has shown better execution than 
conventional AI strategies for specific grouping and expectation 
undertakings. In order to represent data in a structure that is 
hierarchical, a variety of nonlinear functions may be implemented 
at various levels of abstraction. This attribute has been 
demonstrated to be advantageous in enhancing the modelling 
efficacy for numerous comprehensive data analysis efforts.

In the area of artificial intelligence, AI- derived models are 
regarded as fundamental deep-learning techniques that have 
contributed to developments in image processing as well as 
analysis. Deep, feed-back Artificial Neural Networks (ANNs), of 
which CNNs are a subset, are a family of neural network structures 
with multiple layers that have been effectively implemented in 
computer vision tasks. 
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At this time, CNNs are acknowledged as one of the biggest and 
most influential machine learning strategies for the analysis of 
massive amounts of data across a vast array of scientific disciplines. 
The use of CNNs and derivatives of them in horticultural comprises 
a significant portion of the papers examined (92.86%, or 65 papers) 
[5]. Figure 1. Convolutional Neural Networks (CNNs) generally 
comprise several standard components, such as fully connected 
layers, convolution, and pooling, which connect simultaneously in 
various configurations to execute complicated learning tasks.

Figure 1: An input layer, convolution layer, Max pooling, and 
fully-connected neural network layer that outputs the activation 

function are typical of a convolutional neural network  
architecture.

We require horticultural crops including fruits, vegetables, 
herbs, perfumes, and decorative plants. With contemporary 
civilization, Horticulture crops shape human culture, enhance 
landscapes, and influence lives in addition to supplying sustenance. 
Horticultural workers generate more types and better goods due to 
this job transition, which is growing more significant. It also pushes 
horticulture researchers to work more practically to enhance crop 
functionality.

AI used in Horticulture production

Nowadays, horticulture crop production faces climatic issues 
such as rising temperatures and the possibility of frost, which might 
result in crop loss. With the progress of AI, methods for forecasting 
changes in environmental conditions are now accessible, allowing 
farmers to take the required precautions to safeguard their crops, 
whether by early harvesting or other ways. This technology may 
also be used in greenhouses to monitor and manage environmental 
conditions inside the building [6]. A business called as Sentiment 
had devised a system that can carefully evaluate the parameters 
that include light intensity, temperature, salinity, and water stress, 
and can warn for deviations if found, which may provide favourable 
conditions for plant development.

We present an in-depth review of machine learning’s 
applications for Horticulture in this post. Numerous relevant studies 
are provided, highlighting important and unique characteristics of 
widely recognized ML models.

Tables 1 list the numerous acronyms that appear throughout 
this paper, which are categorized into methods of Machine 
Learning (ML), statistical measures, and generic abbreviations, 
respectively, due to the massive number of abbreviations applied 
in the associated scientific publications [7].

Abbreviation Model
ANN Artificial neural networks
BM Bayesian models
DL Deep learning
DR Dimensionality reduction
DT Decision tree
IBM Instance-based models
SVM Support vector machine

Table 1: Methods for the Machine Learning Framework.

Machine Learning (ML)

ML techniques often use a learning strategy that aims to learn 
from “experience” (training data) to accomplish a job.

In the world of machine learning, data is a collection of 
instances. Typically, an example is characterized by a collection of 
qualities, commonly referred to as features or constants.

The ML model’s success in a particular job is assessed by an 
efficiency measure that improves with experience over time figure 
2 [8]. Several statistics and mathematical approaches are used to 
assess the effectiveness of machine learning models and methods. 

Figure 2: A common machine learning technique.
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Impact of AI and IOT in horticulture

At the 1956 Dartmouth Conference, John McCarthy coined 
the term artificial intelligence (AI), describing it as a science and 
technical process for producing intelligent devices, particularly 
clever programming for computers. Artificial Intelligence (AI) 
technology endows machines with computing intelligence, enabling 
them to fully understand, analyse, and react to surroundings [9]. 
Artificial Intelligence (AI) encompasses several subfields, such as 
vision in computers, fuzzy reasoning, systems of experts, machine 
learning, deep learning, natural language processing, and Swarms 
Intelligent (SI), as seen in figure 3. Figure 3: AI Technology.

The important variances between this review research and 
earlier works on the subject are shown in table 2. The paperwork 
has been organized as follows.

S. No. Paper Keywords 

1 Sharma., et al. 
[11]

Ref. [11] Improvements in intelligent farming and precise Horticulture provide critical tools for  
addressing Horticulture sustainability difficulties. Based on the research results, a ML-based  

framework for long-term ASC is provided.
2 Usha., et al. [12] Ref. [12] The same data may be analysed in several ways for different purposes.  The possible  

application of RS approaches in Horticultural will be briefly addressed in order to harness the current 
technologies for optimal crop management.

3 Saedi., et al. [13] Ref. [13] This result demonstrates that the framework is well-developed and has strong  
generalizability. This model’s processing time was roughly 8 Ms per picture, compared to 351 Ms for 

ResNet152, demonstrating that the suggested network is substantially superior for real-time  
applications.

4 Ariesen-Ver-
schuur., et al. [14]

Ref. [14] This report summarizes the findings from a thorough literature assessment on digital-twin 
applications for greenhouses horticultural. The research reveals 8 papers that directly address the  

application of Digital Twins in greenhouse horticulture and 115 studies that indirectly apply the  
Digital Twin idea to smart IoT-based systems. 

5 Longchamps., et 
al. [15]

Ref. [15] This study discusses yield estimation methodologies that may be classified as proximal, 
either indirect or direct, and distant measuring concepts. It discusses remote sensing as a method for 
estimating and forecasting yield prior to harvesting. This analysis revealed the need for new commer-

cial methods to map horticulture crop yields.

Table 2: Significant distinctions between the published papers and the article.

Method

First, the evaluated articles were divided into four main 
categories: soil management, water management, animal 
management, and horticultural management. Based on their 
intended purpose, machine learning applications in the horticulture 
industry were categorized into smaller areas. These applications 
included identifying plants, predicting production, detecting 
diseases, assessing crop quality, and identifying species. Animal 
welfare and livestock production were found to be the two distinct 
areas for machine learning applications in the livestock business.

World Science Direct, Scientific Nature, PubMed, Scopus, 
Google Scholar, and Natural were the main search engines that 
were employed. The selected papers concentrate on works 
that are generally published in journals. Despite being crucial 
to Horticulture output, climate prediction was left out of the 
assessment that was presented, despite the fact the use of Machine 
Learning (ML) approaches for predicting climates are a distinct 
discipline. Lastly, everything that is written here relates to the 
years the year 2004, until the present day.
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Forecast productivity

 Yield prediction is one of the most significant problems in 
precision horticulture. It is essential for mapping and forecasting 
productivity, balancing crop demand versus supply, and controlling 

Article Crop Observed feature Functionally Models/algorithm Results
[16] Coffee Fourty-two (42) colors appear in 

digital photographs of coffee fruits.
Automatically 
counts coffee 

fruits on a coffee 
branch.

SVM Harvestable: (1) Ready or 
overripe: 85.54-83.83% 

deceivability rate (2) Semi-
ready: 98.25-89.32% de-

ceivability rate. 1) Unripe: 
76.91-82.38% deceivability 

rate.
[17] Green 

citrus 
Picture credits (from 20 x 20 pixel 

advanced photos of unripe greenish 
citrus organic products) incorporate 
unpleasantness, contrast, direction, 

line-similarity, consistency, flaws, 
and level of detail, anomaly, radiance, 

non-abrasiveness, and fineness. 

ID of how much 
youthful green-

ish citrus organic 
product according 
to normal outside 

conditions.

SVM 89.4% accuracy

[18] Grass Vegetation pointers, the ghostly 
groups of red and infrared.

Assessed green 
creation (kg dry 
matter/ha/day) 
for two treated 

prairie ranches in 
Ireland: Moore-

park and Granger.

ANN/ANFIS Moore Park: R 2 = 0.88 
RM.SE = 15.07 Grange: R2 = 

0.76 RM.SE = 15.55.

[19] Tomato High spatial resolution in RGB pho-
tos.

Location of 
tomatoes utilizing 
RGB photographs 
recorded by UAV. 

Clustering/EM Recall: 0.6866. Precision: 
0.6191; F-Measure: 0.7305.

[20] Rice Horticultural, surface meteorological, 
and soil physicochemical informa-

tion, including yield or improvement 
records.

Rice development 
stage and yield 

estimate.

SVM Center season rice: RMSE 
(kg h−1 m2) = 128.8; 

Headed stage: RMSE (kg 
h−1 m2) = 98.4; Dairy 

stage: RMSE as (kg h−1 m2) 
= 139.4; Early rice: RMSE 

(kg h−1 a2) = 89.3; Headed 
stage: RMSE (kg h−1 m2) 
= 69.0 Cow stage: RMSE 

(kilograms h−1 m2) = 32.4. 
Late rice: developing stage: 

the RMSE (kg h−1 m2) = 
88.2; headed stage: RMSE 
(kg h−1 m2) = 59.7. Milk 
stage: RMSE (kg h−1 m2) 

= 46.5.
[21] General Horticultural data: meteorological, fi-

nancial, and natural factors and reap.
Strategy for solid 

assessment of 
agrarian yield 

gauges.

ANN/ENN and BPN-
based.

1.3% error rate.

Table 3: Summarizes the aforementioned studies for the yield prediction sub-category.

crops to maximize production. Table 3. One efficient, inexpensive, 
and non-intrusive machine learning program was able to count the 
amount of caffeinated fruits on a branch on its own.
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Weed detection 

Weed identification and control is another major issue in 
Horticulture. Weeds, according to many growers, are the greatest 
serious hazard to Horticulture productivity. Weeds are challenging 
to recognize and recognize from crops, accordingly viable 
distinguishing proof is basic for maintainable horticulture. Once 
more, ML calculations joined with sensors might bring about exact 
weed ID and characterization at a modest expense, with no natural 
troubles or secondary effects. ML for weed recognizable proof 

Article Observed feature Functionally Models/algorithm Results
[22] Phantom groups 

including red, green, 
and NIR, as well as 

the surface layer

Recognizable proof and planning 
of Silybum marianum.

ANN/CP 98.87% accuracy.

[23] Otherworldly parts 
of hyperspectral 

imaging.

Recognizable proof and separa-
tion of Zea mays and types of 

weeds

ANN/one-class SOM, 
Clustering/one-class 

MOG

Zea mays: SOM rises to 100 percent 
precision MOG approaches 120 

percent exactness. Weed species: SOM 
= 58-94% exactness. MOG: 38-88% 

exactness.

[24] Camera shots of 
grass and other 

weed assortments. 

Report on the exhibition of order 
frameworks for grass versus weed 

identification.

SVN 98.9% Once more, Rumex grouping 
4.68%. Urtica characterization: 98.1% 

for blend weed and blended climate 
conditions.

Table 4: Summarizes the preceding studies for the instance of weed identification sub-category.

might assist with planning instruments and robots to eliminate 
weeds, lessening the interest for pesticides. Two examination on AI 
applications for weed recognizable proof difficulties in horticulture 
were introduced.

The primary objective was to accurately recognize and 
discriminate between these species for both ecological and financial 
reasons. Table 4. The authors developed a weed identification 
approach that utilizes SVN in grassland crops. 

Evaluation and evaluation of knowledge-based horticulture 
systems.

In this part, the ML algorithms employed by various researchers 
in the accuracy of the Horticulture system are discussed [10]. The 
Horticulture business faces several issues across the globe, and a 
knowledge-based Horticulture model enables farmers to make 
sustainable use of resources while maximizing production from 
Horticulture land. Figure 4 depicts the categorization of goods 
based on the many uses of precision Horticulture.

Figure 4: Classification based on Horticulture cycles.

All of the distributions of the machine learning and deep 
learning models used by precision Horticulture researchers is 
shown in figure 5 [11].
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Figure 5: Machine learning methods utilized in precision  
Horticulture applications.

Figure 6 illustrates the implementation of CNN, ANN, and RNN 
algorithms in precision horticulture. The researchers employed 
approximately ten diverse DL/NN algorithms for prediction and 
classification throughout the assessed research. However, figure 
6 specifically highlights and presents the eight most frequently 
used techniques. The remaining two algorithms, namely LeNet and 
Caffee, are categorized into various groups and are employed as 
supporting or comparative algorithms.

Figure 6: Classification algorithm for precision Horticulture.

AI’S problems and limitations in accuracy the horticulture 
sector

Artificial intelligence has an opportunity to play a significant 
role in satisfying the world’s food requirements [12-30]. However, 
there are several problems that are impeding its implementation in 
Horticulture businesses, which are detailed below

•	 Ineffective educational attainment among Indian farmers 
making it challenging to bridge the divide between them 
and technological advances, corresponding to a recent 
governmental survey. 

•	 Farmers lack motivation to gain digital skills for better 
Horticulture practices. 

•	 The greatest number of Horticulture fields are situated 
in rural areas. In remote areas with inconsistent internet 
connectivity, integrating IoT architecture and WSN—which 
need the use of cloud computing services to handle data 
processing and storage—is very difficult. 

•	 Machines’ cognitive abilities make accurate prediction and 
categorization challenging in different regions. 

•	 The initial setup of digital farming, including gear and 
software, demands significant investment. 

•	 Deploying smart sensors and electrical devices consumes 
significant energy.

Conclusion

Farmers may use precision Horticulture to maximize yields with 
precise inputs by using technology. Smart actuators enabled by the 
Internet of Things, sensors, satellite images, robots, and unmanned 
aerial vehicles are a few of the notable technological innovations 
that have benefited the Horticulture industry. Additionally, the data 
demonstrates that SVM and ANN machine-learning models were 
used in the bulk of the study. More specifically, SVMs were used 
for managing livestock whereas ANNs were used for Horticulture, 
water, and soil management. In horticultural research, algorithms 
that use deep learning provide a powerful tool for data absorption 
and have shown promise in addressing the present challenges of 
accurately estimating plant conditions, accurately recording plant 
progress, and quickly identifying product quality. 

Future Work 

Future research might build NLP-based systems for 
Horticultureists, and more ML, DL, or combination algorithms 
could be investigated in Horticulture to make sustainable use of 
the resources currently in position.
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