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Abstract
Advancements in Next Generation Sequencing have led to an increased exploration of the genome and transcriptome to uncover 

genetic variants associated with phenotypic traits. Genome-wide association studies (GWAS) and genomic predictions play a crucial 
role in identifying significant genetic variants that contribute to complex traits. However, most of these variants are found in non-cod-
ing regions of the genome, making their functional annotation and interpretation challenging. This review highlights the importance 
of characterizing and prioritizing non-coding variants and their effects on regulatory elements in livestock genomics. Regulatory ele-
ments such as promoters, enhancers, silencers, and non-coding RNAs coordinate gene expression and are critical for understanding 
the underlying mechanisms of traits. The abstract also discusses various tools and methods for annotating and predicting the effects 
of regulatory variants, as well as validation platforms for studying their functional impact. Comprehensive functional annotation of 
non-coding variants is essential for gaining insights into the genetic architecture of complex traits and improving genetic selection 
strategies in livestock breeding programs.
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Introduction

Exploration of genome and transcriptome are increasing day by 
day to accelerate genetic gain with the advent of Next generation 
Sequencing (NGS), there is a hike in studies where genetic vari-
ants are tested for associations with phenotypic traits. In the era 
of genomics and phenomics, carrying out genome-wide associa-
tion studies (GWAS) and genomic predictions, is the key to account 
for significant genetic variants leading to variations in complex 
traits, thereby modifying the phenotypes. GWAS detects mutations 
that explain variance enough that surpass threshold p-values [1]. 
Quantitative/Complex/Multifactorial/Polygenic traits are affected 
by a number of variants having small effects, which may be cod-

ing or non-coding, leading to the phenotypic variations [2]. For in-
stance using GWAS approach seven genes were identified in Indian 
Buffalo viz., NCBP1, FOXN3, TPK1, XYLT2, CPXM2, HERC1, and OP-
CML associated with mastitis [34] and AQP1, TRNAE-CUC, NRIP1, 
CPNE4 and VOPP1 have role in different fertility traits [35]. This 
is because non-coding areas of the genome are where the major-
ity of GWAS-identified SNPs are found. The GWAS-identified SNPs 
must be viewed as merely representative of all SNPs in the same 
haplotype block, and it is equally possible that additional SNPs in 
high linkage disequilibrium (LD) with the array-identified SNPs 
are causal for the disease [3]. Most of the time we do not hit the 
gene directly, instead we hit the region surrounding it. Due to lack 
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of fine-scale mapping, unfortunately the nearby gene is assumed as 
causal for the trait. This is where linkage disequilibrium comes into 
play. A total of 88% of disease-associated variants lie in non-coding 
regions [4]. The regulatory variants should be annotated further 
for prioritization of variants in genomic studies [5]. Searches per-
taining to coding regions may fail to yield causal variants, if this 
is the case [6]. Causal variants underlying quantitative traits often 
have regulatory effects on the expression of target genes and that 
these expression effects might be modest and cell-type specific [7]. 
Lack of comprehensive functional annotations across a wide range 
of tissues and cell types severely hinders the biological interpreta-
tions in livestock. Thus, it is hi-time to characterize, annotate and 
prioritize non-coding variants as well as their effects [8].

Key regulatory elements
Regulatory elements coordinate the precise expression of genes 

as per- cell type, developmental stage and stimuli. Genomic ele-
ments that regulate gene expression, generally, located within non-
coding regions are known as regulatory elements. Promoters are 
located in the 5’ region of genes that activate transcription via RNA 
Polymerase II (RNAPII). Enhancers are bound by activators and 
concerned with upregulation while silencers are bound by repres-
sors and concerned with downregulation. Insulators prevent in-
teraction between promoters and enhancers. Promoters, enhanc-
ers, silencers and repressors are the key cis-regulatory elements 
(CREs). The Non-coding RNAs (ncRNAs) are subject to post-tran-
scriptional modification [9]. In Bos taurus cattle, 28.3 million SNPs 
and InDels have been detected, which can be imputed further into 
larger datasets for GWAS and genomic predictions [10]. Moreover, 
the current map of bovine regulatory variants is also limited [11].

Promoter region of Holstein Friesian cattle, a total of 16 alleles 
(R1A/B to R16A/B). Amongst these, allele R5A/B at position -204 
(G>C) from the transcription start site holds importance as it lies 
within the binding site of milk protein binding factor (MPBF), and 
might affect the activity of the gene product [12].

Methodology
Map and characterize the circuitry of non-coding elements in-

cluding cis-regulatory regions (promoters, enhancers, insulators 
and silencers) and ncRNAs. These elements can be identified by 
a combination of functional genomics approaches and sequence 
conservation [13]. Then identify disease-relevant tissues, anno-
tate variants and regulators (Table 1). Combine the genetic and 

Name Uses Data sources Limitations Refer-
ences

Regulom-
eDB

Score-based  
prioritization

ENCODE,  
Roadmap  

Epigenomics

Difficult to 
interpret

[14]

HaploReg Variants in LD, 
within or next to 

regulatory  
elements

ENCODE, 
GTEx  

Roadmap  
Epigenomics

Not updated 
periodically

[15]

FunciSNP Identification and 
prioritization of 

putative  
regulatory SNPs

ENCODE, 
Roadmap  

Epigenomics

A minimum 
knowledge of 
R is needed

[16]

ENlight Annotation of 
GWAS variants 
and analyzing 
their putative 
effects by plot 
visualization.

GWAS,  
ENCODE, 

GTEx

Not updated 
periodically

[17]

Table 1: Regulatory variant annotation tools.

epigenetic variation in the study. Then, uncover and manipulate 
trait mechanism and circuitry. High-throughput perturbations and 
therapeutic delivery should be done for validation, as described in 
Table 2.
Effect prediction tools

Prediction algorithms to calculate the probability of this vari-
ant to affect regulatory motifs and hence, affect the traits. GWAVA 
(Genome-Wide Annotation of Variants): is a tool that facilitates 
noncoding variant prioritisation through the incorporation of 
various genomic and epigenomic annotations. Compared to a 
conventional variant predictor, combined annotation-dependent 
depletion (CADD) performs better on regulatory variants [18]. 
CADD (combined annotation-dependent depletion), a process for 
integrating a variety of different annotations into a single, objec-
tive measurement (C score) for each variant. A support vector ma-
chine called CADD has been trained to distinguish between 14.7 
million high-frequency alleles derived from humans and 14.7 mil-
lion simulated variants. C scores rank known pathogenic variants 
within individual genomes highly and correlate with allelic diver-
sity, annotations of functionality, pathogenicity, disease severity, 
experimentally measured regulatory effects, and complex trait as-
sociations. Through a variety of functional categories, effect sizes, 
and genetic architectures, CADD can prioritize functional, harmful, 
and pathogenic variants [19]. DANN, (The Deleterious Annotation 
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of genetic variants using Neural Networks tool) forecasts the ef-
fects of non-coding variants, it makes use of a Deep Neural Network 
(DNN) algorithm that captures linear relationships among various 
annotations, including evolutionary features. This tool was created 
to enhance the CADD SVM algorithm results; by utilizing DNN, it 
can capture more relationships between annotated objects. DANN 
has been shown to outperform CADD results using the same anno-
tations and training data sets [20]. LINSIGHT predicts the potential 
effects of regulatory variants and ranks them; it combines proba-
bilistic and linear models with functional and evolutionary con-
servation data. LINSIGHT identifies harmful regulatory variants 
linked to inherited diseases by analyzing data for various genomic 
features from sources like ENCODE and FANTOM5. This method 
is used to determine the selective pressure on regulatory regions, 
assess the fitness effects of regulatory variants, and forecast their 
effects [21]. FATHMM-MKL: (Functional Analysis through Hidden 
Markov Models, http://fathmm.biocompute.org.uk/): It is based on 
a machine learning algorithm that employs annotations from EN-
CODE to predict the potential effects of regulatory variants using a 
multiple kernel (MK) learning technique. In order to classify input 
variants and ultimately predict their potential effects, it weights 
all the annotations according to their relevance during training 
and generates matrices that will be used by an MK algorithm. The 
pathogenic variants from the HGMD and benign variants from the 
1000 Genomes Project are both included in the gold-standard data 
set. The p-values for the predictions made by FATHMM-MKL are 
provided for use in other integrative studies. The FATHMM-XF 
method, which trains a supervised machine learning approach 
with additional genetic and epigenetic features from ENCODE and 
the Roadmap Epigenomics Project and assigns a confidence score 
to all predictions, has recently improved the prediction system of 
FATHMM-MKL. Recent research has shown that FATHMM-XF per-
forms better than other predictors, such as CADD and DANN [22].

Challenges
Genomic predictions are not practical due to computing limi-

tations. For GWAS, very stringent significance thresholds are re-
quired to avoid false positives. There is also a need to annotate the 
variants into classes and prioritize them for testing with a higher 
a priori probability of containing trait associated variants (TAV). 
However, a large number of variants with significant associations 
are found in the non-protein coding regions of the genome [8]. 
Category-based Bonferroni adjustment based on the enrichment 
was implemented in Nordic Holstein cattle was carried out where 
upstream and downstream classes were most enriched, for more 
dairy traits. Intergenic and intragenic variants constituted ~67% 
and 32% of the total number of variants, respectively [23]. Using 

Technique Description

Chromosome conformation 
capture (3C)

Analyse chromatin structure by 
quantifyng interactions between 

two selected loci
Chromosome conformation 

capture-on-chip (4C)
Between a specific locus and other 

loci

Chromosome conformation 
capture carbon copy (5C)

All possible interactions within 
different genomic regions

Hi-C genome-wide chromatin structure 
using high-throughput sequencing 

techniques
Chromatin interaction analysis 
by paired-end tag sequencing 

(ChIA-PET)

Combination of ChIP-based meth-
ods with 3C and sequencing

Luciferase reporter assay activity of genomic functional 
element

DNA fluorescence in situ hy-
bridization (FISH)

locating specific DNA sequences 
within chromosomes

CRISPR/Cas9 target mutations to specific regula-
tory elements in experimental 

models

Table 2: Validation platforms for regulatory variants.

functional annotations to prioritize variants within the QTL inter-
val has become a popular strategy. It was recently demonstrated 
that the use of a variant annotation tool and its evolutionary con-
servation score [24]. Due to many reasons, such as LD, inaccuracy 
of imputation, random sampling errors, etc., the lead single nucleo-
tide polymorphism (SNP) may not be the causative one [23].

Applications
Genetic diversity plays a massive role in combating abiotic 

stress [38]. Diversity is indicated in polymorphism the causal regu-
latory polymorphisms, rSNPs may be used in Marker-trait associa-
tion followed by Marker-assisted Selection. They can help to select 
young male calves especially for traits with low heritability (h2). 
These variants can be of transgenic use and improve the accuracy 
of several prediction models, thus enabling functional dissection of 
traits. The variants mined may help understand novel target regu-
latory functions and navigate choice of novel therapeutics and per-
sonalized medicine. Comparative epigenomics in conjunction with 
large-scale GWAS for more reliable results. The findings may be ex-
trapolated for changes associated with immune and reproduction 
in cattle to further advance human research. The findings may be 
extrapolated for changes associated with immune and reproduc-
tion in livestock to further advance human research like immuno-
therapy which is generally recognised as a viable treatment option 
for food allergies [39].
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The polymorphism analysis of bovine BLG promoter region by 
Lum., et al. (1997) [25] revealed 10 polymorphic sites. They con-
firmed the functional importance of transversion (G to C) within 
a consensus binding site for activator protein-2 (AP-2) at position 
–430 bp from the transcription initiation site [25]. In the Braun-
vieh cattle, two coat colour variations are noted viz., colour-sided 
and belted [26]. Artificial insemination was extensively done in the 
1960s. Besides KIT and MITF genes, an intronic regulatory single 
nucleotide variant was found in bovine MITF in Holstein and Sim-
mental cattle, related to coat colour genetics [27,28]. Hauswirth., et 
al. (2012) [29]; Korberg., et al. (2014) [30] and Negro., et al. (2017) 
[31] also reported such variants for white spots on the head and 
the body in dogs and horses. Brown Swiss cattle with white spots 
on the abdomen and/or on the head reported more frequently. Ge-
notyping of 172 Brown Swiss cattle revealed two significantly asso-
ciated completely linked single nucleotide variants (rs722765315 
and rs719139527). Both variants are located in the 5′-regulatory 
regions of the bovine MITF gene. Comparative sequence analysis 
(DNaseI hypersensitive site and a H3K27ac cluster) showed that the 
variant rs722765315, located 139 kb upstream of the transcription 
start site of the bovine melanocyte-specific MITF transcript [32]. 
In depth studies of quantitative trait loci (QTL) at chicken chromo-
some 1 associated with growth traits and contributed 14.4% of 
the genetic variance for growth. Many candidate genes reside in 
the associated region, including Retinoblastoma 1 (RB1), Forkhead 
box O1 (FOXO1). The SIRT6 promoter variants significantly affect 
transcriptional levels and subsequently significantly influence bo-
vine intramuscular fat content (c.-1100 A > G) [33]. In the chicken 
genome Kanaka et al. (2021)[38] has identified polymorphism in 
SERPINB14 gene promoter regions which were associated with 
egg quality and age at sexual maturity. Identifying key regulatory 
variants using GWAS approach and functional genomics can also 
be used to provide conclusive evidence where there will be conflict 
between different schools of thoughts, for example impact of Beta 
Casomorphin-7 in A1 milk and its effects on human well being [39].

Conclusion
Researchers have to put great efforts into the annotation of 

regulatory elements (e.g., promoters and enhancers) across mul-
tiple tissues and cell types in cattle, parallel to ENCODE projects (in 
human, mouse, and Drosophila) and Roadmap Epigenomics Proj-
ect. By integrating such functional annotations with GWAS from 
large cohorts (e.g., 1000 bulls project), investigators can gain novel 
biological insights into regulatory genetic architecture underlying 
complex traits and diseases. The generally conserved sequences 
across species can help to explore the biological basis of complex 
outcomes and adaptive evolution in the target species (e.g., cattle 
and swine) by borrowing functional annotations from well-studied 
species such as humans and mice.
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