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The history of Transposable elements (TEs) has started in 1951 
with the discovery of the Ac (Activator) and Ds (Dissociation) ele-
ments by Barbara McClintock, that she considered to be at the ori-
gin of mutations leading to genetic instabilities in the color of corn 
kernels [1]. These discoveries, for which McClintock was awarded 
the Nobel Prize in 1983, revolutionized the notion of genome stabil-
ity to demonstrate that it is dynamic and fluid [2]. Thus, transpos-
able elements are defined as repeated DNA sequences dispersed 
in the genome that are capable of moving from one site to another 
and multiplying in an autonomous or non-autonomous way. These 
mobile DNA sequences have several impacts on the genomes they 
invade and are key players in their evolution and diversity [3-5].

Eukaryotic TEs are divided into 2 major classes according to 
their transposition mechanism [6]: Class I elements or retrotrans-
posons move via an RNA intermediate according to the “copy-
and-paste” model, whereas Class II elements or DNA transposons 
transpose via a DNA intermediate according to the “cut-and-paste” 
model.

TEs are at the origin of different chromosomal rearrangements 
that they induce as a result of ectopic recombination taking place 
between homologous regions of copies. Various studies have been 
carried out on TEs-induced chromosomal rearrangements and 
have demonstrated their implication in translocation, duplication 
and deletion phenomena [7-9]. These rearrangements will be at 
the source, not only of the change in the architecture of genomes 
but also of their size evolution. 

TEs constitute innovative sequences by bringing to the host 
genome new genetic information corresponding to regulatory re-
gions such as promoters and splicing sites. As so-called “control 
elements” [10,11], TEs can contribute to the regulation of gene ex-

pression according to their insertion sites. Indeed, insertion near 
genes can influence their expression through their own regulatory 
regions and thus this gene will be expressed under the control of 
the promoter of the TEs near it. 

In Drosophila simulans, variations in emitted courtship songs 
have been shown to be due to an intronic insertion of a TE into a 
gene (slo) encoding an ion chain thus altering its splicing [12]. 

The rearrangements and modifications caused by TEs are not 
always deleterious. Indeed, they can be recruited or domesticated 
by the host genome to perform biological functions that are vital 
to the cell. Domestication involves TEs in different biological func-
tions and processes such as immunology [13], regulation of apop-
tosis, cell cycle control as well as in mammalian reproduction [14-
16]. 

Chromosomal rearrangements and changes in genome architec-
ture created by TEs could be the source of differentiation between 
species and the creation of biological barriers[17]. For example, in 
Drosophila, hybrid dysgenesis creates barriers that can lead to the 
speciation [18].

In insects, some TEs have been found to be fixed in the ge-
nome species, in particular in Drosophila melanogaster [19] and 
are therefore used as genetic markers to study the polymorphism 
of their insertion sites within the different populations of a given 
species or between two neighbouring species in order to estimate 
the date of their speciation or to predict their evolutionary history. 
Studies conducted by Boulesteix, Simard [20] have shown that the 
insertion polymorphism of some TEs, notably the non-LTRs, differs 
between the two molecular forms M and S forms of the mosquito 
Anopheles gambiae (Diptera: Culicidae). In addition, the polymor-
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phism of the insertion sites of the SINE-type element is used as a 
genetic marker of choice to better characterize the divergence of 
the X chromosome between populations of these two molecular 
forms in Anopheles [21]. These TEs also play adaptive roles for in-
sect hosts during their evolution, especially in the Drosophilidae 
[22].

Otherwise, the ability of transposable elements to mobilize has 
allowed them to be used as biotechnology tools for transgenesis 
and mutagenesis to control insect pests or disease vectors. These 
technologies aim either to genetically modify the insects in ques-
tion by blocking the genes involved in virulence or in the devel-
opment of pathogenicity, or to suppress an entire population of 
insects of insects by generating sterile males or females carrying 
dominant alleles of lethality [23]. P-elements are the first vectors 
used to transform embryonic or germline cells in Drosophilidae 
[24]. In non Drosophilidae, three major elements have been used 
for transgenesis.

•	 PiggyBac elements are the most widely used vectors for 
transformation in insects of various orders [25] including 
Coleoptera and Diptera [26,27].

•	 The mariner-like Minos element that has been used to 
transform some species of Tephritidae including the olive 
fly Bactrocera oleae [28] and the corn rootworm Diabrotica 
virgifera (Coleoptera: Chrysomelidae) [29].

•	 The Hermes element of the hAT superfamily from the 
housefly Musca domestica [30].

It should be noted that the choice of vector depends largely on 
the genome’s repertoire of transposable elements and the activity 
of the elements of the families in question. 

The TEs used as a vector to transform host cells must not have 
homologous copies same group in the genome in question. There-
fore, the annotation of TEs and the study of the dynamics of the 
different populations of these elements is a crucial step for the 
analyses that follow. This is facilitated by the accessibility of se-
quenced genomes and the development of bioinformatics tools. 
More recently, many genomes have been used to annotate TEs in 
economically important insect pests like Hessian fly [31], the cot-
ton bollworm [32] and whitefly [33] to localise the TEs insertion 
sites around virulence or insecticide resistance genes. TEs are min-
ing in large number of insect genomes and have been annotated 

using a big variety of bioinformatics tools and methods. Neverthe-
less further analyses should follow these annotations and results 
of annotations should be treated with caution regarding evolution 
and adaptations of host species for more reliability and accuracy.
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