

ACTA SCIENTIFIC ORTHOPAEDICS (ISSN: 2581-8635)

Volume 8 Issue 12 December 2025

Review Article

Fullerenes in Regenerative Medicine: An Analysis of Therapeutic Potential with Stem Cells and Platelet-Rich Plasma

James Vanden Bosch*

Clinical Orthobiological and Regenerative Medicine Specialist, USA

*Corresponding Author: James Vanden Bosch, Clinical Orthobiological and Regenerative Medicine Specialist, USA.

Received: November 06, 2025

Published: November 29, 2025

© All rights are reserved by

James Vanden Bosch.

Abstract

Fullerenes, a novel class of carbon nanostructures, are emerging as a promising therapeutic platform in regenerative medicine due to their potent antioxidant, cellular-modulating and redox-balancing properties. This white paper examines the integration of fullerene technology with stem cell and platelet-rich plasma (PRP) therapies, outlines a synergistic framework for improving regenerative outcomes, reviews the fundamental chemistry and mechanisms of fullerenes, and addresses translational challenges. These findings suggest fullerenes may serve as catalytic bioprotectants, forming a new foundation for next-generation regenerative therapies.

Keywords: Platelet-Rich Plasma (PRP); Fullerenes; Mesenchymal Stem Cells (MSCs)

Introduction

Regenerative medicine aims to restore or replace damaged tissues by harnessing biological and technological mechanisms. Among emerging nanomaterials, fullerenes—spherical carbon allotropes first discovered in 1985—have attracted attention for their unique combination of antioxidant potency, electronic versatility and potential biological compatibility [2,8]. The archetypal fullerene, C_{60} , exhibits antioxidant capacity orders of magnitude greater than conventional agents [10]. Integrating fullerenes with biological regenerative approaches such as mesenchymal stem cells (MSCs) and PRP may help overcome key limitations such as oxidative stress and sub-optimal cellular signalling.

Fullerene fundamentals Structure and chemistry

Fullerenes are closed cage-like molecules composed entirely of carbon atoms arranged in pentagonal and hexagonal configurations. The C_{60} molecule adopts a truncated icosahedron geometry with 12 pentagons and 20 hexagons—resembling a soccer ball [10]. Each carbon atom is sp^2 hybridized and participates in one double bond and two single bonds. This delocalized π -system gives fullerenes unique redox and electronic properties, enabling both electron accepting and donating behaviors' [2]. Because of these properties, fullerenes can act as "free radical sponges" of extraordinary capacity.

Functionalization and solubility

Pristine fullerenes are hydrophobic and poorly soluble in aqueous biological systems, which limits their direct biomedical application (Muscle and Brawn, 2025). To overcome this barrier, functionalization (e.g., hydroxyl-, carboxyl- or amino-group attachment) produces fullerenol derivatives with enhanced solubility and biocompatibility. These derivatives can act as scaffolds for drug/gene delivery, or as three-dimensional carriers of thera-

peutic agents. However, the chemical reactivity of the fullerene cage—while enabling radical scavenging—is also a risk factor for undesirable interactions or even pro-oxidant behavior under certain conditions [4].

Biological mechanisms of action Radical scavenging and redox balance

Fullerenes are described as "radical sponges" due to their ability to neutralize reactive oxygen species (ROS) in a catalytic, nonconsumptive manner. For instance, in a skeletal muscle fatigue model in rats, C_{60} aqueous colloids reduced TBARS and H_2O_2 levels, increased endogenous GSH and catalase activity, thereby enhancing muscle endurance [11]. In another study, water-soluble C_{60} improved antioxidant status and reduced apoptosis in intestinal epithelial cells exposed to a mycotoxin *in vitro* and *in vivo* [12].

Mitochondrial targeting

A deeper mode of action has been proposed in which fullerenes may act as proton carriers, penetrate the inner mitochondrial membrane, reduce the proton-motive force and thereby lower mitochondrial superoxide production. This mechanism may explain observed anti-aging and cytoprotective effects beyond classical radical scavenging (Hypothetical mechanistic proposals; see discussions in Vita60, 2025).

Therapeutic applications

The properties of fullerenes are being explored across several therapeutic contexts:

- Drug/gene delivery via functionalized cages.
- Antiviral/anticancer therapy: Fullerenes binding hydrophobic viral proteases or acting as photosensitizers in photodynamic therapy.
- **Neuroprotection**: Due to ROS-neutralization and possible inhibition of amyloid aggregation.

These capacities illustrate the versatility of fullerenes as a therapeutic platform rather than a single-target drug.

Regenerative medicine context Stem cell therapeutics

Mesenchymal stem cells (MSCs) are central to regenerative medicine due to their multipotency and paracrine signaling, yet their *in vivo* efficacy is often limited by low proliferation, poor differentiation and vulnerability to oxidative microenvironments [7]. Studies report that fullerene derivatives (e.g., C_{60} phosphonate) can enhance differentiation of adipose-derived MSCs towards myogenic/cardiomyocyte lineages [3], suggesting a direct modulating effect of fullerene chemistry on stem cell fate.

Platelet-rich plasma (PRP) therapy

PRP is an autologous blood-derived product which, after centrifugation, concentrates platelets to deliver a high dose of growth factors (PDGF, VEGF, TGF- β , EGF) to injury sites, thereby stimulating native stem cells and endogenous repair mechanisms [6]. While promising, the clinical evidence for PRP is mixed: heterogeneity in preparation methods, variable compositions, and inconsistent protocols limit standardization and reproducibility [1].

Fullerene-PRP synergy model Mechanistic integration

A proposed therapeutic framework is a "Fullerene-Enhanced PRP" (F-PRP) approach: PRP provides concentrated growth-factor signaling while fullerenes act as cytoprotective, redox-modulating agents that stabilize the regenerative microenvironment. By scavenging ROS and reducing mitochondrial stress, fullerenes may improve stem cell survival, proliferation and differentiation activated by PRP's growth factors, thereby amplifying and sustaining regenerative outcomes.

Potential clinical indications

This combined therapy could be particularly useful in cases where oxidative stress undermines regeneration:

- Musculoskeletal disorders (chronic tendinopathy, ligament repair)
- Non-healing wounds in diabetic or ischemic contexts
- Cardiac repair post-infarction where oxidative injury and stem cell engraftment are major barriers

Challenges to clinical translation Toxicity and variability

Despite the therapeutic promise of fullerenes, translation to human use is hindered by inconsistent toxicity profiles and formulation variability. Studies show that toxicity depends on aggregation state, solvent residue, surface functionalization and exposure to light [4]. For example, a review of fullerenol derivatives noted variable antioxidant versus pro-oxidant behavior depending on oxygen substitution numbers [9]. Consumer supplement sources caution that human safety data are lacking [8].

Regulatory barriers and standardization

Nanomaterials such as fullerenes fall into a regulatory grey zone: conventional small-molecule drug frameworks inadequately capture size, surface chemistry, aggregation state, biodistribution and long-term clearance. Without standardization of materials and reporting protocols, reproducibility and regulatory approval remain challenging. Similarly, PRP preparations suffer from lack of standard classification and trial heterogeneity [1,6].

Strategic roadmap for development

To accelerate clinical translation, the following roadmap is proposed:

- Standards and Characterization: Develop industry-wide standards for fullerene material specification (size, aggregation, surface chemistry) and reporting.
- Focused Clinical Model: Select a single well-defined indication (e.g., chronic tendon injury) and trial a standardized F-PRP formulation under controlled conditions.
- Regulatory Engagement: Collaborate early with regulatory bodies (e.g., FDA) to define appropriate pathways for nanomaterial-based regenerative therapies.
- Long-Term Safety Studies: Conduct biodistribution, clearance and long-term toxicology studies (large-animal models) with carefully characterized fullerene materials.

Conclusion

Fullerenes represent a unique and powerful platform for regenerative medicine. Their exceptional antioxidant and mitochondrial-modulating properties, combined with direct influence on stem cell biology, position them as valuable adjuncts to existing biological therapies such as PRP. The proposed synergy between fullerenes and PRP may enable transition from symptomatic relief to true regenerative repair. However, achieving this potential demands rigorous standardization, robust safety data and regulatory collaboration.

Bibliography

- Chahla J., et al. Biotherapeutic applications of platelet-rich plasma in regenerative medicine". International Journal of Molecular Sciences 18.2 (2017): 408.
- Healthline. "Carbon 60 (C60) benefits: Is it good for you?" (2023).
- Kostyuk S V., et al. "The phosphonate derivative of C₆₀ fullerene induces differentiation towards the myogenic lineage in human adipose-derived mesenchymal stem cells". Journal of Nanobiotechnology 20 (2022): Article 234.
- "Toxicity and antioxidant activity of fullerenol C_{60,70} with low number of oxygen substituents". *International Journal of Molecular Sciences* 22.12 (2021): 6382.
- 5. Muscle and Brawn. "C60 supplement for health: Does it actually work?" (2025).
- 6. Pensato R., *et al.* "The use of platelet-rich plasma in aesthetic and regenerative medicine: A comprehensive review". *Aesthetic Plastic Surgery* 47 (2023): 6-7.
- Reddy SHR., et al. "Stem-cell therapy and platelet-rich plasma in regenerative medicine: A review on pros and cons of the technologies". Journal of Orthopaedic Surgery and Research 13 (2018): 104.

- 8. SelfDecode. "What is C60 oil (fullerene)? + Risks" (2019).
- 9. Tsyganova YM., et al. "Toxicity and antioxidant activity of fullerenol $C_{60,70}$ with low number of oxygen substituents". International Journal of Molecular Sciences 22.12 (2021): 6382.
- 10. Vita60. "What is C60? Carbon 60 | VITA60" (2025).
- Zholobak NM., et al. "C₆₀ fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue". Journal of Nanobiotechnology 15 (2017): Article 8.
- 12. Zhu L., *et al.* "Fullerene C60 protects against intestinal injury from deoxynivalenol toxicity by improving antioxidant capacity". *Life* 11.6 (2022): 491.