

ACTA SCIENTIFIC ORTHOPAEDICS (ISSN: 2581-8635)

Volume 5 Issue 6 June 2022

Research Article

Effectiveness of Shoulder Mobilization on Abduction in Dominant Versus Non-Dominant Periarthritic Shoulder

Rajani Cartor Medidi* and Munaparthi Mounika

Department of Physiotherapy, Orthopedics-Speciality, VAMPS College of Physiotherapy, India

*Corresponding Author: Rajani Cartor Medidi, Department of Physiotherapy, Orthopedics-Speciality, VAMPS College of Physiotherapy, India.

DOI: 10.31080/ASOR.2022.05.0484

Received: April 28, 2022 Published: May 23, 2022

© All rights are reserved by Rajani Cartor

Medidi and Munaparthi Mounika.

Abstract

Background: Periarthritis Shoulder is common condition of the shoulder joint, affecting 2% of the general population. Periarthritis is characterized by initially painful and later progressively restricted active and passive range of motion of the shoulder joint. Mobilization is a passive manual therapy applied to joints and related soft tissues at varying speeds and amplitudes for therapeutic purposes. If Periarthritis shoulder has considerable effect on dominant versus non dominant shoulder, the dominant shoulder has more effects in decreasing pain and increasing movement than non-dominant shoulder. This is based on cerebral dominance, lateralization of pain and side to side symmetry.

Aim: To determine the recent research evidence for the Effectiveness of Shoulder Mobilization on abduction in Dominant or Non dominant Periarthritic Shoulder.

Method: this review includes simple randomized controlled trail (RCTS). Subjects with Periarthritis shoulder attending physiotherapy outpatient department at KGH and VAPMS College of physiotherapy would be included in this study.

Results: present outcomes show that mobilization in dominant Periarthritic shoulder is effective in reducing pain and increasing range of motion (ROM) than non-dominant Periarthritic shoulder without adverse effects.

Keywords: Shoulder Mobilization; SPADI; Periarthritis; Dominant Side; Non-Dominant Side

Abbreviations

SPADI: Shoulder Pain and Disability Index; ROM: Range of Motion; SD: Standard Deviation; PA: Periarthritis; SE: Standard Error

Introduction

Periarthritis was first identified by Neviaser in 1945, Neviaser identified "Periarthritis" is a chronic inflammatory process leading to thickening and contracture of the shoulder capsule which latter becomes adherent to the humeral head. Zuckerman and Cuomo defined the condition is distinguish by significant restriction of

both active and passive shoulder motion that occurs in the absence of a known intrinsic shoulder disorder. This condition is describe as a contracted, thickened joint capsule that appears to be drawn tightly around the humeral head, with relative absence of synovial fluid, and chronic inflammatory changes within the synovial layer of the capsule leading to stiffness pain and dysfunction [1]. "Frozen shoulder" firstly named by Codman in 1934. Codman explained frozen shoulder is a painful shoulder condition with insidious onset and is gradually associated with stiffness and pain in forward elevation, external rotation, abduction movement and difficulty in sleeping over affected side. Adhesive capsulitis, Periarthritis, and

frozen shoulder are all other terms used to explain painful and stiff glenohumeral joint. Adhesive capsulitis is defined as a common condition characterized by sudden and gradual inflammation of the shoulder joint capsule which leads to contracture and thus resulting in stiffness and decreased in shoulder movements [2].

The prevalence rate of periarthritis affecting shoulder is 2-5.3%, with individuals affecting commonly at the age group of between 40 to 60 years. Usually periarthritis shoulder is a self-limiting condition which may resolve within 2-3 years but it can extend beyond 3 years in up to 40% of patients. According to Smita Bhimrao 2014, Frozen Shoulder or Adhesive Capsulitis affects 3% to 5% of the general population and up to 20% in people with diabetes [4]. The incidence of Frozen Shoulder in unilateral shoulder increases the risk of contra lateral shoulder involvement with 5% to 34%. It is divided in to 4 stages with symptoms lasting for 30 months. Joint Mobilization is a form of passive movement used to treat painful and stiff synovial joints [15]. Goals

- Increase active and passive range of motions.
- Increase strength.
- Decrease pain.

SPADI is a disease specific, self-administered questionnaire that measures the impact of shoulder pathology in terms of pain and disability [25].

A Goniometer is a device that measures an angle or permits rotation of an object to a definite position [27].

Material and Methodology

- Study Design: Pre and posttest experimental design.
- Sampling Method: Random sampling method.
- Sample size: 30

Thirty persons with Periarthritis has been selected and assigned into two equal groups.

- Group A: Patients with shoulder mobilization in dominant shoulder.
- Group B: Patients with shoulder mobilization in non-dominant shoulder.

Study Set - up

- VAPMS College out: Patient department bakkanpalem, Visakhapatnam.
- 11B physiotherapy out: Patient department, King George Hospital.

Duration of course-one year.

Criteria

Inclusion criteria

- Age 40-60 years
- Diabetic and non-diabetic conditions
- Gender male and female
- Right and left side
- Periarthritis shoulder in 2nd and 3rd stages

Exclusion criteria

- Bicipital tendinitis
- Supraspinatus tendonitis
- Complete tear of rotator cuff muscle
- Unstable joint
- Fracture of shoulder
- Dislocation of shoulder
- Acromioclavicular joint tenderness
- Subacromial bursitis

Materials

- Hot Pack
- Straps and belts

Methodology

The study was designed as Simple Randomized Trial and the sample is divided into two groups. Group A is given with hot pack and Mobilization in dominant side Periarthritis patients, while

Group B is given with hot pack and Mobilization in non-dominant side Periarthritis shoulder patients.

A total of 40 patients are included as per inclusion criteria. They are randomly assignment into two groups A and B with 20 patients in each group. Baseline assessment through Visual analog scale (VAS), Shoulder pain and disability index (SPADI) and Goniometry was done respectively for Pain, Function and shoulder range of motion (abduction) for both groups. Treatment was given three times a week for four weeks (12 sessions).

- **Hot pack procedure:** Patient is in supine lying hot pack is placed on shoulder joint for 20 minutes [12].
- **Mobilization procedure:** Patient is positioned in supine lying position with shoulder abducted to 30 degrees and therapist stands in walk stand position with holding the proximal end of the humerus with one hand and maintaining a lateral humeral distraction in its midrange position with other hand. Caudal glide mobilization are given to the shoulder joint at a rate of 2-3 glides for one second for 30 seconds for each glide, given for 5 sets. The technique was applied three times a week for four weeks (12 sessions) [22].

Figure 1: Caudal glide position.

Measuring tools

Shoulder pain and disability index

The SPADI was developed by Roach and colleagues in 1991. The shoulder pain and disability index (SPADI) is a self-report questionnaire developed to measure the pain and disability associated with shoulder pathology.

SPDI is a questionnaire that consists of two sets: one for pain scale and other for disability scale (mobility). Pain scale consists of 5 questions related to the severity of individual's pain. Disability scale consists of 8 questions which are designed to measure the available range of upper extremity. To complete the questionnaire it takes 5 to 10 minutes. The patient is instructed to choose the number that describes the highest level of pain and extent of difficulty in using the involved shoulder.

The pain scale is summed up to a total of 50 and disability scale summed up to 80. Total SPADI score is expressed in percentage. A score of 0 indicates best and 100 indicates worst. A higher score indicates more disability.

How severe is your pain?	0= no pain; 10 = so
pain scale	difficulty
At its worst	012345678910
When lying on involved side	012345678910
Reacting for something on a high	012345678910
shelf	
Touching the back of your neck	012345678910
Pushing with the involved arm	012345678910
Disability scale	0= no difficulty; 10 = so
	difficulty
Washing your hair	012345678910
Washing your back	012345678910
Putting on an undershirt/jumper	012345678910
Putting on a shirt that button down	012345678910
the front	
Putting on a pants	012345678910
Placing an object on a high shelf	012345678910
Carrying a heavy object of 10 pounds	012345678910
Removing something from your back	012345678910
pocket	

Table 1

SPADI (shoulder)

- Name
- Date

Technique

A Goniometer is an instrument which measures both active as well as passive range of motion of the joint. Positioning of the joint is important in goniometry because it helps to place the joint in a zero without any disturbances. Firstly palpate the relevant bony landmark and align the goniometer then the examiner records the starting measurement and removes the goniometer, and the patient moves the joint through the available range of motion. Once the joint run through the available range of motion, the examiner replaces and realigns the goniometer, and then mark the measurement. The examiner repeats the measurement three consequent times and calculates the average active range of motion. Then the examiner compares the readings with the contralateral side.

The joint is then moved through its passive (PROM) and the above-mentioned steps are repeated to measure PROM accurately. Care is necessary to make sure that the patient does not move his body while moving the joint, thereby ensuring accurate measurement. Any disturbed position in the joint tightens the soft tissue structures which lead to a limited range of motion [27].

Statistical test

Paired "t" test

Standard deviation

$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{(n-1)}}$$

 \bar{x} = Mean of sample

n = Number in sample

Standard error

SE = SD/ \sqrt{n}

Level of significance

$$\mathbf{t'} = \frac{\overline{x}}{s/\sqrt{n}}$$

Unpaired "t" test

Standard deviation

$$S = \sqrt{\frac{\sum (X - \overline{X})^2 + \sum (Y - \overline{Y})^2}{(n_1 + n_2 - 2)}}$$

Standard error

SED =
$$S\sqrt{\frac{s_1^2 + s_2^2}{(n_1 n_2)}}$$

Level of significance

$$T = \frac{(\overline{x} - \overline{y})}{SED}$$

X1	X2	$X1-X2 = \sum X$	χ^2
78.26	34.5	43.7	25
86.1	36	50.16	2.131
83.2	35.1	48.14	0.313
86.1	35.1	51	5.29
86.2	35	51.2	6.25
88.2	35	53.2	20.25
86.1	30.5	55.6	47.61
78.24	30.5	47.7	1
86.19	30.5	55.6	47.61
79.16	30.5	48.6	0.01
84.12	35.5	48.6	0.01
78.41	35.5	42.9	33.64
80.10	34	46.1	6.76
78.52	35	43.5	27.04
80.12	35	45.1	12.96
		731.1	235.8

Table 2: PAIRED "t" TEST.

SPADI on dominant shoulder (GROUP - A).

X1	X2	$X1-X2 = \sum X$	X ²
79.12	19.1	60	0.25
79.15	17.5	61.6	4.41
80.1	19.5	60.6	1.21
80.2	20.1	60.1	0.36
79.15	19.1	60	0.25
80.1	25.1	55	20.25
80.2	19.5	60.7	1.44
80.1	18.2	61.9	5.76
79.10	19.5	59.6	0.01
79.10	18	61.1	2.56
80.1	15.5	64.6	26.01
80.1	20.1	60	0.25
79.15	25.1	54	30.25
79.15	25.1	54	30.25
80.1	20.1	60	0.25
		873.9	123.51

Table 3: SPADI on non-dominant shoulder (Group - B).

X1	X2	X1-X2= ∑X	X ²
30	75	-45	5.76
35	80	-45	5.76
30	75	-45	5.76
40	75	-35	57.7
40	75	-35	57.7
40	75	-35	57.7
30	75	-45	5.76
35	80	-45	5.76
35	80	-45	5.76
30	80	-45	5.76
35	80	-45	5.76
30	80	-50	57.7
40	80	-40	5.29
40	80	-40	5.29
40	80	-40	5.29
		-635	292.75

Table 4: Goniometer on dominant shoulder (Group- A).

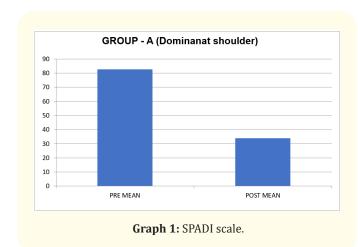
X1	X2	$X1-X2 = \sum x$	X2
35	65	-30	19.36
30	60	-30	19.36
30	60	-30	19.36
30	60	-30	19.36
30	60	-30	19.36
30	60	-30	19.36
35	65	-30	19.36
35	55	-20	31.36
35	55	-20	31.36
40	55	-15	112.3
40	60	-20	31.36
40	60	-20	31.36
35	65	-30	19.36
35	60	-30	19.36
35	60	-30	19.36
		-395	431.34

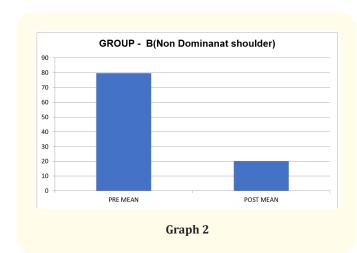
Table 5: Goniometer on non-dominant shoulder (Group-B). Unpaired "t" test.

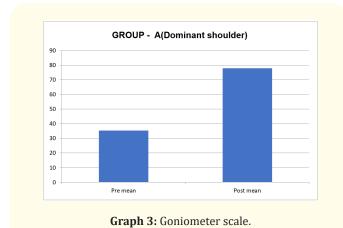
SPADI scale on periarthritis shoulder.

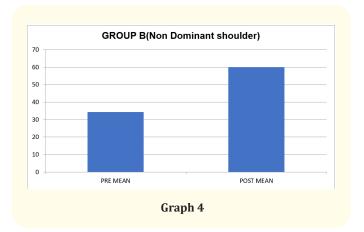
X	X2	Y	Y2
34.5	1190.6	19.1	420.2
36	1296	17.5	462.2
35.1	1232	19.1	519.8
35.1	1232	20.5	420.2
35	1225	21.5	462.2
35	1225	21.5	462.2
30.5	930.2	20.8	432.6
30.5	930.2	20.5	420.2
30.5	930.2	20.5	420.2
30.5	930.2	20.5	420.2
35.5	1260.2	21.8	475.2
35.5	1260.2	22.8	519.8
34	1156	22.8	519.8
35	1225	22.8	519.8
35	1225	20.5	420.2
507.7	17247.4	321.3	6894.6

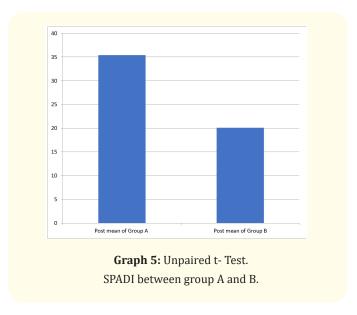
Table 6: Group A (Post intervention) Group B (Post intervention). Unpaired "t" test.

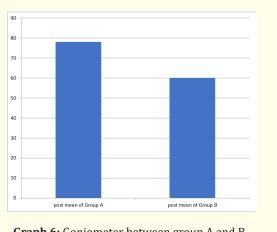

Goniometer on periarthritis shoulder.


X	X2	Y	Y2
75	5625	65	4225
80	6400	60	3600
75	5625	60	3600
75	5625	60	3600
75	5625	60	3600
75	5625	60	3600
75	5625	65	4225
80	6400	55	3025
80	6400	55	3025
80	6400	55	3025
80	6400	60	3600
80	6400	60	3600
80	640	65	4225
80	6400	60	3600
80	6400	60	3600
1170	91350	900	54150


 Table 7: Group A (Post intervention) Group B (Post intervention).


Data presentation


PARIED" t" - Test



Graph 6: Goniometer between group A and B.

Data Analysis and Results

Paired t -test

Variable	Mean	SD	SE	T14	L.O.5 at 5%
Pre-Test	82.6	4.1	1.05	45.9	0.0001
Post Test	33.8				

Table 8: SPADI scale for group a (Shoulder mobilization)

Tabulated 't' value with 14df at 0.05 level of significance in a two tailed test is 0.0001 which is lesser than the calculated 't' 45.9.

Variable	Mean	SD	SE	T14	L.O.S at 5%
Pre-test	79.6	2.96	0.76	77.6	0.0001
Post test	20.1				

Table 9: SPADI Scale for Group B (Shoulder Mobilization).

Tabulated 't' value with 14df at 0.05 level of significance in a two tailed test is 0.0001 which is lesser than the calculated 't' 77.6.

Paired t-test

Variable	Mean	SD	SE	T14	L.O.S at 5%
Pre test	35.3	4.95	1.27	- 33.3	0.0001
Post test	78.0				

Table 10: Goniometer Scale for Group-A.

Tabulated 't' value with 14df at 0.05 level of significance in a two tailed test is 0.0001 which is lesser than the calculated 't' -33.3.

Variable	Mean	SD	SE	T14	L.O.S AT 5%
Pre test	34.3	5.30	1.36	- 18.7	0.0001
Post test	60				

Table 11: Goniometer Scale for Group-B.

Tabulated 't' value with 14df at 0.05 level of significance in a two tailed test is 0.0001 which is lesser than the calculated 't' -18.7.

Unpaired t- test

Treatment	Post mean		SD	SE	T28	LOS at 5%
Shoulder	35.4	62.5	2 71	0.95	122	2.05
mobilization	33.4	03.3	5.71	0.73	12.2	2.03
Shoulder	20.1	339.7				
mobilization	20.1	339.7				

Table 12: SPADI Scale.

Tabulated 't' value with 28df at 0.05 level of significance in a two tailed test is 2.05 which is lesser than the calculated 't' 12.2.

Unpaired t-test

Variable	Post mean		SD	SE	T28	LOS at 5%	
Shoulder	78	90	2.53	0.65	16.2	2.05	
mobilization		70	2.55	0.05	10.2	2.03	
Shoulder	60	150					
mobilization							

Table 13: Goniometer.

Tabulated 't' value with 28df at 0.05 level of significance in a two tailed test is 2.05 is lesser than the calculated 't' 16.2.

Results

		Experi-	At	Table	
		mental		values	
		values			
T14	Paired for	45.9	0.05	2.15	Highly significant
	A SPADI				showing that
	SCALE				shoulder mobi-
					lization effective
					on dominant
					shoulder.
T14	Paired for	77.6	0.05	2.15	Highly significant
	B SPADI				showing that
	SCALE				shoulder mobi-
					lization effective
					on non-dominant
					shoulder but
					Group A results
					are better than
					Group B
T14	Paired	-33.3	0.05	2.15	Highly significant
	for A				showing that
	GONIOM-				shoulder mobi-
	ETER				lization effective
					on dominant
					shoulder
T14	Paired	-18.7	0.05	2.15	Highly significant
	for B				showing that
	GONIOM-				shoulder mobili-
	ETER				zation is effec-
					tive, but Group A
					results are better
					than
					Group B.

T28	Unpaired	12.2	0.05	2.05	Significant, null
	Α				hypothesis is
	and B				rejected, and Al-
	SPADI				ternate hypothesis
	SCALE				is accepted.
T28	Unpaired	16.2	0.05	2.05	Significant, null
	A				hypothesis is
	and B				rejected, and Al-
	GONIOM-				ternate hypothesis
	ETER				is accepted.

Table 14

The results are shown that better results are seen in effect of shoulder mobilization on dominant Periarthritis shoulder. Hence null hypothesis is rejected and alternate hypothesis is accepted.

Discussion

The aim of the study is to find the effectiveness of shoulder mobilization in dominant vs non dominant Periarthritis shoulder. The study was detailed to find out which group i.e., dominant or non-dominant shoulder got better outcome results.

In this study overall 30 Subjects who met the inclusion criteria are randomly allocated into 2 groups. The subjects of age between 40-60 years as per the inclusion criteria, who were suffering from Periarthritis shoulder were selected.

15 subjects with group A treated with shoulder mobilization in dominant shoulder, while the other 15 treated with shoulder mobilization on non-dominant shoulder.

Pretreatment values are taken using SPADI and GONIOMETER Scale before 4 weeks of treatment intervention, and after 4 weeks of treatment intervention. These values are analysed by paired "t "test and unpaired "t" test.

It showed that subjects from group - A showed greater improvement in movement, than compared with the subjects from group - B, subjects with group A (dominant shoulder) showed better improvement in movement because of cerebral dominance right handed individuals has increase in pain tolerance that left handed. Hence group A shown better results than group B. Based on this data we accept alternate hypothesis and reject the null hypothesis.

Periarthritis is an enigmatic condition characterized by painful, progressive and disabling loss of active and passive glenohumeral joint range of motion in multiple planes. Periarthritis typically progress through a series of stages that correspond to arthroscopic and histological findings. In the painful stage, patients often have mild shoulder pain and decreased glenohumeral joint ROM.

Master chart

S. No	Age	Sex	Pre	Post	X	X2	X-X	(X-X)2
1.	41	F	78.2	34.5	43.7	1849	-5	25
2.	45	F	86.1	36	50.16	2510.0	1.46	2.131
3.	46	M	83.2	35.1	48.14	2313.6	-0.56	0.313
4.	40	M	86.1	35.1	51	2601	2.3	5.29
5.	45	M	86.2	35	51.2	2621.42	2.5	6.25
6.	45	M	88.2	35	53.2	2830.2	4.5	20.25
7.	50	F	86.1	30.5	55.6	3091.3	6.9	47.61
8.	55	F	78.2	30.5	47.7	2275.2	-1	1
9.	52	F	86.1	30.5	55.6	3091.3	6.9	47.61
10.	53	M	79.1	30.5	48.6	2361.9	-0.1	0.01
11.	45	M	84.1	35.5	48.6	2361.9	-0.1	0.01
12.	47	M	78.4	35.5	42.9	1840.4	-5.8	33.64
13.	42	M	80.1	34	46.1	2125.2	-2.6	6.76
14.	43	M	78.5	35	43.5	1892.2	-5.2	27.04
15.	50	M	80.1	35	45.1	2034.0	-3.6	12.96
16.					731.1	35798.6	0.6	235.87

Table 15: Pre-mean = 82.6

Post mean = 33.8SD = 4.1

SE = 1.05

T14 = 45.9.

Citation: Rajani Cartor Medidi and Munaparthi Mounika. "Effectiveness of Shoulder Mobilization on Abduction in Dominant Versus Non-Dominant Periarthritic Shoulder". Acta Scientific Orthopaedics 5.6 (2022): 89-100.

S. No	Age	Sex	Pre	Post	X	X2	X-X	(X-X)2
1.	45	F	79.1	19.1	60	3600	0.5	0.25
2.	48	M	79.1	17.5	61.6	3794.5	2.1	4.41
3.	49	M	80.1	19.5	60.6	3672.3	1.1	1.21
4.	45	M	80.2	20.1	60.1	3612.0	0.6	0.36
5.	45	F	79.1	19.1	60	3600	0.5	0.25
6.	45	F	80.1	25.1	55	3025	-4.5	20.25
7.	46	F	80.2	19.5	60.7	3684.4	1.2	1.44
8.	50	F	80.1	18.2	61.9	3831.6	2.4	5.76
9.	55	M	79.1	19.5	59.6	3552.1	0.1	0.01
10.	50	M	79.1	18	61.1	3733.2	1.6	2.56
11.	55	M	80.1	15.5	64.6	4173.1	5.1	26.0
12.	46	M	80.1	20.1	60	3600	0.5	0.25
13.	45	M	79.1	25.1	54	2916	-5.5	30.25
14.	45	F	79.1	25.1	54	2916	-5.5	30.25
15.	45	F	80.1	20.1	60	3600	0.5	0.25
16.					893.2	53310.2	0.7	123.51

Table 16: Pre mean = 79.6; Post mean = 20; 1SD = 2.96; SE = 0.76; T14 = 77.6.

S. No	Age	Sex	Pre	Post	X	X2	X-X	(X-X)2
1.	41	F	30	75	-45	2025	2.4	5.76
2.	45	F	35	80	-45	2025	2.4	5.76
3.	46	M	30	75	-45	2025	2.4	5.76
4.	40	M	40	75	-35	1225	-7.6	57.7
5.	45	M	40	75	-35	1225	-7.6	57.7
6.	45	M	40	75	-35	1225	-7.6	57.7
7.	50	F	30	80	-45	2025	2.4	5.76
8.	55	F	35	80	-45	2025	2.4	5.76
9.	52	F	35	80	-45	2025	2.4	5.76
10.	53	M	30	80	-45	2025	2.4	5.76
11.	45	M	35	80	-45	2025	2.4	5.76
12.	47	M	30	80	-50	2500	7.4	57.7
13.	42	M	40	80	-40	1600	-2.3	5.29
14.	43	M	40	80	-40	1600	-2.3	5.29
15.	50	M	40	80	-40	1600	-2.3	5.29
			530	1170	-635	27175	-3.1	292.7

Table 17: Pre mean = 35.3; Post mean = 78; SD = 4.95; SE = 1.27; t14 = -33.3.

S. No	Age	Sex	Pre	Post	X	X2	X-X	(X-X)2
1.	45	F	35	65	-30	900	4.4	19.36
2.	48	M	30	60	-30	900	4.4	19.36
3.	49	M	30	60	-30	900	4.4	19.36
4.	45	M	30	60	-30	900	4.4	19.36
;.5.	45	F	30	60	-30	900	4.4	19.36
6.	45	F	30	60	-30	900	4.4	19.36
7.	46	F	35	65	-30	900	4.4	19.36
8.	50	F	35	55	-20	400	-5.6	31.36
9.	55	M	35	55	-20	400	-5.6	31.36
10.	50	M	40	55	-15	225	-10.6	112.3
11.	55	M	40	60	-20	400	-5.6	31.36
12.	46	M	40	60	-20	400	-5.6	31.36
13.	45	M	35	65	-30	900	4.4	19.36
14.	45	F	35	60	-30	900	4.4	19.36
15.	45	F	35	60	-30	900	4.4	19.36
			515	900	-395	10825	11	431.34

Table 18: Pre mean = 34.3; Post mean = 60; SD = 5.30; SE = 1.36; t14 = -18.7.

	Common Orthopaedic conditions a	nd their first line Physiotherapy Manageme	ent 98
CONDITION	ACUTE (RICE)	SUB ACUTE	CHRONIC
Bursitis a)traumatic b)non-traumatic	a)cryotherapy b)biomechanical analysis	a)avoid activity b)stretch or strengthening	electrotherapy
Frozen shoulder (depends on primary le- sion)	Deep Heating, (nocturnal pain thermotherapy contraindicated) U.S.,	Exercise Programme	Passive mobilisation
Rotator cuff tear	Cryotherapy, US, TENS	Friction massage (contraindicated in old pts)	SWD (if no ↑pain on exposure)
Swimmer's shoulder (impingement)	US, LASER (Low), Cryotherapy	Pulsed Galvanic stimulation, US, Transverse friction massage, Passive mobilisation, Kinesio Taping	Strengthening
Supraspinatus tendinitis	Cryotherapy, wet heat/US	Isometrics	Strengthening Ex's
Tennis elbow/ Golfer's elbow	Cryotherapy, Sinusoidal stimulation, US with Hydrocortisone cream, TENS,	Manipulation(contraindicated if pain at rest), Effleurage, Knead	Post surgical – Diapulse, TENS,US, Mobilization,
Myositis Ossificans	Iontophoresis (2% acetic acid,) Phonophoresis, extra corporeal shock wave therapy	Avoid stretching and massage	Strengthening Ex's
Carpal tunnel syndrome	Deep pulsed US, TENS,	Tendon - Nerve glides,	Ergonomics, Ex's
Ganglion cyst	Ultrasound	Massage gently	Immobilized (brace)
Wrist strain	PRICE	Passive motion, Aquatic therapy, TENS	Isotonic Ex's,
De Quervain's syndrome	cryotherapy	US, Deep heat modality,	Transverse friction massage
Dupuytren's contracture (only post operatively)	Splinting, FUT, FUP, ROM uninvolved	Range of motion exercises,	Strengthening
Trigger Finger	Paraffin wax bath, US	Friction massage	Exercises
Mallet finger	Splinting, cryotherapy,	ROM and Conditioning Ex's	Stretching
Sacroiliac Dysfunction	Thermotherapy, SI joint belt, electro- therapy, Taping,	Transversus abdominis, deep Gluteal muscle contractions/ex's	Restore power, proprioception, balance, gait patterns
Iliotibial tract syndrome	Discontinue cycling, US, Hydrocollator packs	Graduated sustained stretching,	@Max stretch position Holds
Piriformis syndrome	US (broad strokes longitudinally) / Hot/cold sprays 10min,	Soft tissue mobilization, Stretch in FAIR position,	MFR, Exercises (roll, cycling, knee bends)
Acetabular Labral Tear	Pain control(Maitland's grade 1), trunk stabilisation, Laser, ES	Muscle strengthening, sensory motor training, ROM	Advanced sensory motor, sport specific
Patellofemoral Syndrome	Taping, Foot orthosis, manual therapy, ES for VMO	Quadriceps strengthening ex's, *Ober's (IT,TFL)and Thomas test ex's	Proprioceptive training, Functional and strengthening ex's
Patellar Tendinitis (Jumper's knee)	Cryotherapy, Diapulse, US, Quadriceps Isometrics,	Gradual mobilisation	eccentric exercise, Passive stretches
ACL Tear (mild otherwise post operative cases only)	NMES, Taping, Brace,	Quadriceps & Hamstring strengthening, cpm	Exercises Proprioception, Coordination, Isokinetics
Meniscal Tear(old pts Ex therapy & Arthroscopy same effect but general Arthroscopy is effective)	TENS, Thermotherapy, Galvanic stimulation, Phonophoresis, Ex's	Wall squats, VMO emphasised, CPM	Weight bearing, stationary cycling, track running
Total Knee Replacement	(Circumferential) massage, Full extension, Isometrics	ROM, SLR, Balance, Non-weight/partial weight bearing, Proprioception	Weight bearing-crutch, Patellar glides, progressed, Aerobic ex's,
Achilles Tendonitis	Ice massage, pulsed US, Diapulse, Heel cushion, avoid strain of wt.	Heel Raise advise, passive stretch, US,	Bilateral toe standing, Jog, spot Run
Ankle sprain (no diastasis)	RICE, toe movements, immobilised/ strapping, Daily open tapping, Cast bracing,	Mobilisation, Ice immersion	Active, weight bearing ex's, thermotherapy if no edema, US, Reeducation, Transfers, sports
Plantar fasciitis	Contrast bath, FFB, US	Mild stretches, Fascial release,	Sole muscle exercises,
Calcaneal spur	Wedging of shoe, Heel raise, Sarbo rubber heel pad, FFB, US	Intrinsic muscle ex's, sustained toe curling,	Strengthening ex's, lateral foot border walk
Metatarsalgia	Cold packs, warm water bath, TENS, US, Diapulse, FUP, avoid high heels	FFB along with intrinsic muscle ex's,	Reeducation of walking, strengthening ex's
Tarsal Tunnel Syndrome	Thermotherapy, US, TENS,	Ionotophoresis, Nerve glides,	Orthotics, Ex's
Morton's Neuralgia	Rest, massage, cryo, plantar pads to elevate heads of MT,	FFB, deep tissue massage, US (phonophoresis), extracorporeal shockwave therapy,	Stretching ex's

	T.		
Trapezius fibrositis	Soft tissue manipulation, IFT, Thermotherapy,	Relaxation techniques	Stretching, conditioning Ex's
Fibromyalgia	TENS, Manipulations,	Lymph drainage massage,	Aquatic therapy, Ex's
PIVD - Disc bulge	Acute – Rest, corset, prone	Cryo, TENS,US, IFT, Pulsed SWD,	Traction (15 min)
-Disc protrusion (medial to the nerve root :Trac- tion is contraindicated)	Rest, cryo, TENS, US, pulsed SWD, IFT, Traction, corset	Traction - intermittent (<15min)- sustained (>10min)	Extension bias,
-Disc extrusion (hernia)	Rest, TENS, Hydrotherapy, Ice, Extension bias,corset	Traction (2 weeks), gentle pelvic tilt, cat and camel ex's, aerobic,	Flexibility, strength ,posture,
-Disc sequestration	Rest, hydrotherapy, TENS, Deep tissue massage,corset	Traction gently to prevent affect of gravity on spine	Core stability, flexibility, strengthening,
Annular tear	Ice/heat, rest, massage, IFT, corset	Low impact ex's	Core strengthening, stationary bicycle, hydrotherapy
Sciatica	Rest, IFT, TENS, US, thermotherapy, back brace,		
Coccydynia	Donut pillow, gel cushion,	Mobilizations, US, SWD	(Deep) transverse friction,
Cervicogenic headache	Mobilization, manipulations,	SNAG, Trigger point therapy	Strengthening deep neck flex- ors, upperquarter
Cervical spondylosis	Isometrics, thermotherapy, IRR, IFT, Massage Traction, Mobilisation, proprioceptive reeducation, postural education		Strengthening ex's, mobility,
Cervical rib	Pulsed Diathermy (if no sensory impairment)		
Lumbar spondylosis	Spine manipulation, TENS, IFT, Corset, McKenzie Ex's,	Traction, McKenzie Ex's,	Aerobics, stretching, Core and Gluteal strengthening, ex's,
Lumbar spondylolisthesis	Rest, braces, William's flexion ex's, IFT, TENS	Isometrics and isotonic ex's to trunk muscles, stretches to hamstrings, flexors, paraspinal	Strengthening deep abdominals, core stability
Lumbar stenosis	Flexion bias, Heat/Ice, bedrest, corset, US, TENS,	Single/double leg exercise to chest, treadmill walk, lumbar isometrics,	Core stability, cycling, aerobics, jogging,
Osteoarthritis	Ex's, mobility, manual therapy, thermotherapy, cryo, TENS, IFT, US, Braces,	Hydrotherapy(ROM/Strength/Aerobics), Manual traction CPM PNE pedocycle OPE	
Gout/Pseudogout	Lithium Ionisation	Cryotherapy	Mobility
Haemophilic arthritis	Hyaluronidase Iontophoresis (Day 1)	Isometrics, TENS, PNF, Hydrotherapy	Diapulse, U.S, Ex's
Rheumatoid arthritis	TENS, IFT, Postural guidance	Isometrics, Breathing Ex's, ROM	Energy Conservation tech- niques, Ergonomics
Ankylosis spondylitis	Hydrocollator Packs, Soft tissue manipulations	Diathermy, Postural guidance, stretches, core stabilisation program	Mobility, Breathing Ex's,

(*NOTE: These are only for a quick glance to approximate the PT management in Orthopaedic conditions. As every patient is a new entity, treatment to be planned based on individual patient presentation, which is assessed throughout treatment process.)

Conclusion

After 4 weeks (28 days) of treatment procedure, mobilization for dominant shoulder (Group A) and mobilization for non-dominant (Group B), both groups showed a significant result by using SPADI AND GONIOM-ETER scale, as an outcome measure.

Though both groups showed significant improvement under respective treatment procedure, but group A showed better improvement than Group B.

This study concludes that individually shoulder mobilization is effective in improving movement and function in Periarthritis shoulder in dominant and non-dominant shoulder.

There is a significant effect of shoulder mobilization on dominant shoulder than non-dominant shoulder.

Limitations and Suggestions

There are several limitations of the present study

- Different pain and mobility scales can be used to access the pain and mobility status of individuals.
- Outcomes were based on subject's data which may vary with their individual and other psychological and physiological status.
- Along with shoulder mobilization Codman Pendular exercises are also effective in increasing movement which is not included in this study.
- Shoulder mobilization with ultrasound has an effect in decreasing pain and increasing movement.
- Sample studies were small, therefore study with a larger population is recommended.
- The study was a short-term study, therefore necessary, to do longer term study to make result more valid.

Bibliography

- Hannafin Jo A., et al. "Section Editor (s): Griffin, Letha Y. MD, PhD
- 2. Garrick James G., et al. "Frozen shoulder: a long-term prospective study". Annals of the Rheumatic Diseases 43.3 (1984): 361-364.
- Toda Katsuhiro. "Left and Non-Dominant Shoulders Were More Frequently Affected in Patients with Frozen Shoulder: A Systematic Review and Meta-Analysis". Orthopedic and Muscular System (2018).
- 4. Shah N and Lewis M. "Shoulder adhesive capsulitis: systematic review of randomized trials using multiple corticosteroid injections". The British Journal of General Practice: The Journal of the Royal College of General Practitioners 57.541 (2007): 662-667.
- 5. Hannafin Jo A., *et al.* "The lateralisation of pain". *Pain* 7.3 (1979): 271-280.
- 6. "Periarthritis of shoulder and diabetes mellitus". *Annals of the Rheumatic Disease* 31.1 (1972): 69.
- 7. Rl Diercks and m stevens. "Gentle thawing of Periarthritis shoulder". *Journal of Shoulder and Elbow Surgery* (2004).
- 8. Nicholas Shah and Mark Lewis. *British Journal of General Practice* 57.541 (2007): 662-667.
- 9. Christopher J Durall. *Clinical Orthopaedics and Related Research* Team Approach E-Book (2017): 158.
- 10. Matteo Salvatore., et al. (2014): 365-377.
- 11. Andrew S Neviaser and Jo A Hannafin. *The American Journal of Sports Medicine* 38.11 (2010): 2346-2356, 2010.
- 12. Hai V Le., et al. "Shoulder and elbow 9.2 (2017): 75-84.
- 13. Connie B Tighe and Ward S Oakley. *Southern Medical Journal* 101.6 (2008): 591-595.
- 14. kelley MJ., *et al.* "Periarthritis shoulder: evidence and proposed model guiding rehabilitation". *Journal of Orthopaedic and Sports Physical Therapy* 39.2 (2009): 135-148.
- 15. J Jurgel., et al. "Shoulder function in patients with Periarthritis.
- 16. Harpal Singh Uppal., et al. "Periarthritis systemic review.
- 17. FE Bruckner and Cis Nye Qjm. "Prospective study of adhesive capsulitis of the shoulder". *An International Journal of Medicine* 50.2 (1981): 191-204.
- 18. Neviaser TJ. "Intra-articular inflammatory diseases of the shoulder". *Instructional Course Lectures* 38 (1989): 199-204.
- Aydeniz A., et al. "Which musculoskeletal complications are most frequently seen in type 2 diabetes mellitus?" Journal of International Medical Research 36 (2008): 505-511.
- 20. Yang., *et al.* "Mobilization techniques in subjects with Periarthritis shoulder Randomized multiple-treatment trail". *Physical Therapy* 87 (2007): 1307-154.

- 21. Carolyn kisner and LYNN Allen Colby. "Therapeutic exercise foundation and technique- 6^{th} edition.
- 22. Vermeulen HM., *et al.* "End range mobilization techniques in Periarthritis of the shoulder joint 80 (2000): 1204-1213.
- 23. Goyal S Bhattacharjee and K Goyal. *Journal of Exercise Science and Physiotherapy* 9.2 (2013): 74.
- 24. RK Minerva Nitya Kumar Alagingi and Patchava Apparao Chaturvedhi P. "To compare the effectiveness of maitland versus mulligan mobilization in idiopathic adhesive capsulitis of shoulder". *International Journal of Health Sciences and Research* (2016).
- 25. Abdullah al shehri, *et al.* "Efficacy of maitland mobilization in frozen shoulder (2018).
- 26. John W William., et al. The Journal of Rheumatology.
- 27. Einar Kristian tveita., *et al.* "Pressure pain threshold asymmetry in left and right handers: associations with behavioral measure of cerebral laterality". *European Journal of Pain* 3.2 (1999): 151-156.
- 28. G Jurgjica Badzakova., *et al.* "Cerebral asymmetries: complementary and independent process". *PLOS ONE* (2010).
- 29. Kinetic Seung Hak Leev., et al.
- 30. RP Vishnu and M Raffi S Anoop. *Department of Ortho SGMC* and RF Venjarmoodu Kerala.
- 31. Mathias Thomas nagy., et al.
- 32. zavala Gonzalez., et al.
- 33. Sharick Shamsi., $\it et~al.~$ "Efficacy of mobilization in Periarthritis.
- 34. Henricus M Vermeulen., *et al*. "Comparsion of high grade and low grade mobilization technique in the management of adhesive capsulitis of shoulder". *Physical Therapy* 86.3 (2006): 355-368.
- 35. Suzie Noten., *et al.* "Efficacy of different type of mobilization techniques in patients with Periarthritis of the shoulder: A systemic review". *Archives of Physical Medicine and Rehabilitation* 97.5 (2016): 815-825.
- RK Minerva., et al. "To compare the effectiveness of maitland versus mulligan mobilization in idiopathic adhesive capsulitis of shoulder". International Journal of Health Sciences and Research (2016).
- 37. Sami S Almureef., *et al.* "Effectiveness of mobilization with conventional physiotherapy in frozen shoulder: a systemic review (2020).
- 38. Abdullah AL Shehri., *et al.* "Efficacy of maitland mobilization in frozen shoulder (2018).
- 39. Tarang K Jain and Neena K Sharma. "Effectiveness of physiotherapeutic intervention in treatment of frozen shoulder". *Journal of Back and Musculoskeletal Rehabilitation* 27.3 (2014): 247-273.
- 40. Martin J Kelley., et al. "Shoulder pain and mobility.