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Induced Myopia and Hyperopia Effect on a Normal Electroretinogram
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Abstract
Significance: To determine if uncorrected refractive error influences the results of an electroretinogram (ERG).

Purpose: To investigate how induced myopia and hyperopia alter electroretinogram (ERG) results in a rabbit model.

Methods: The ERG’s were measured in New Zealand white rabbits (n = 10) after dark adaptation. The ERG’s were then repeated 
using a high-plus contact lens to simulate myopia (-10D and -20D) and high-minus contact lenses to simulate hyperopia (+10D and 
+20D).

Results: Induced refractive error with contact lenses showed a significant reduction in scotopic ERG amplitudes in myopia -10D (P = 
.0479), and hyperopia +10D (P = .0206) and +20D (P = .0487). There was no significant statistical difference in the implicate time or 
a/b wave ratios between plano and induced myopia or hyperopia.

Conclusions: There was a significant decrease in ERG amplitudes after induced refractive error in our animal study. Corrective 
refraction may need to be given to patients prior to ERG or a corrective calculation could be developed to provide a more accurate 
interpretation of ERG’s performed in patients with significant myopia or hyperopia. ERGs performed on highly myopic and hyperopic 
patients should be interpreted with caution and our study provides credence to disparities seen in this patient population.
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Introduction

Retinal electrophysiology, and specifically electroretinograms 
(ERGs), are a diagnostic test that measure electrical activity of 
the retinal tissue [1]. It measures electrical potential response 
to light as it is conducted from the rods and cones through 
the retinal components to the optic nerve fibers. Since its 
development, normative data for electroretinograms have been 
compiled to distinguish normal versus abnormal responses to 

light [2]. Both retina specialists and pediatric ophthalmologists use 
electroretinograms in the clinical setting for a multitude of disease 
processes. At the discretion of the pediatric ophthalmologist, 
electroretinograms are often ordered in preverbal patients with 
concern for decreased vision or unexplained nystagmus. Based on 
neuronal and non-neuronal response to light, an ophthalmologist 
may speculate on possible visual potential and the possible 
etiologies of the decreased visual function.
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Electroretinograms have been shown to be affected by refractive 
error and axial lengths [3-5]. The underlying cause of a decrease 
in amplitude can be explained by underlying retinal pathology 
or an optical defocus of light [6-8]. Additionally, several of the 
more common forms of retinal degeneration are associated with 
pathognomonic high refractive error [9-12]. 

Multiple prior studies have been performed to investigate 
the effect of refractive error on electroretinogram recordings. 
Increasing axial length has been shown to have a reduction in 
amplitudes with no effect on implicit times [3]. In addition, there has 
been reported decrease in retinal function with increasing myopia 
[4]. Current theory for decreased electroretinogram amplitudes 
involve the observed fundus changes in progressive myopia, often 
prominent retinal thinning, with instances of electroretinogram 
changes even preceding visible macular pathology [4,13,14]. 

Alternatively, the optical defocus of light as demonstrated in 
Figure 1 shows the changed focal point will affect the intensity 
by scattering the light field across a larger surface area which will 
change the overall electroretinogram amplitude. With increasing 
high myopia, the light entering the eye from optical infinity will 
be focused farther in front of the retina. With increasing high 
hyperopia, light entering the eye from infinity will be focused 
farther behind the retina. Previous research by Chan et al showed 
refractive blur reduced central amplitudes [8]. Our study involved 
the performance of electroretinograms with induced refractive 
error to remove any potential retinal changes to isolate the full 
effect of optical defocus. We hypothesized light that does not focus 
optimally on the surface of the retina, as seen in large refractive 
errors, will adversely affect the recorded electroretinogram output.

Methods

Electroretinograms were performed on rabbits as approved 
by the Institutional Animal Committee for Use and Care at 
the University of Colorado. All procedures were performed 
in accordance with the ARVO statement for Use of Animals in 
Ophthalmic and Vision Research.

Ten New Zealand white rabbits (Charles River Laboratories), 
5 females and 5 males, were anesthetized with an intramuscular 

Figure 1: Effect of refractive error on optical defocus.

injection of ketamine HCL (30 mg/kg) and xylazine (5 mg/kg) 
followed with 1-2% isoflurane maintenance inhaled with 3 L/
min oxygen prior to all studies. The animals were dark adapted 
for a minimum of 20 minutes again prior to performing the 
electroretinogram and dilated with 0.2% tropicamide and 1% 
phenylephrine. Electroretinograms were performed using a mini 
Ganzfeld stimulator (LKC technologies, Gaithersburg, MD) using 
ERGjet electrodes (La Chaux de Fonds, Switzerland) placed directly 
on the cornea. 

Two electroretinograms were performed on each animal, one 
without refractive correction and one with a contact lens to induce 
high refractive error. The order of no refractive correction and 
induced refractive error was randomized to avoid bias and the 
animals were dark adapted a second 20 minutes between the two 
electroretinograms. 
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We used Proclear Cooper Vision contact lens (Hamble, UK) 
which was placed directly onto the cornea and the ERGjet electrode 
was placed over the contact lens. Rabbits were randomly selected 
for differing powers of -10D (n = 6), +10D (n = 6), -20D (n = 4) and 
+20D (n = 4) contact lenses. 

Statistics of the scotopic b-wave amplitude, a/b wave 
amplitude ratio and implicit time in step 1 were calculated on 
Graphpad Prism 5.03 (La Jolla, CA) by two tailed paired t-test. The 
scotopic electroretinograms were selected to be analyzed as rods 
predominate in a rabbit retina [3]. Amplitudes were considered 
significantly different if P < .05.

Results

In our study, we induced high myopic and high hyperopic 
refractive error with contact lenses in a rabbit model. Recorded 
amplitude and implicit time of the scotopic b-wave was compared 
with and without contact lens installation. Induced myopia with 
+20D contact lens, (P = .0479) and induced hyperopia with -10D 
and -20D contact lens, (P = .0206 and P = .0487 respectively) gave 
significantly reduced recorded amplitudes in 10 rabbits. Further, 
larger studies and human models are needed, but the defocus of 
light does impact electroretinogram results. 

Figure 2: Control amplitudes compared to amplitudes after 
induced refractive error.

Cumulative scotopic amplitudes are shown in Figure 2 and 
the associated statistics are given in Table 1. No significant 
change in implicit times or a/b wave ratios were noted (data not 
shown). Significant differences in recorded scotopic amplitudes 
in simulated hyperopia with -10D and -20D contact lenses, (p = 
.0206 and p = .0487 respectively) and simulated myopia with +20D 
contact lenses, (p = .0479) were found. 

Table 1: Mean control amplitudes versus induced refractive error amplitudes.

NoCL = No Contact Lens

µV = microvault

D = diopters
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In 2 of the rabbits with induced very high hyperopia with a -20 
contact lens, there was a significant decrease in amplitude from 
94.97 µV to 47.23 µV (P = .0007), and 129.9 µV to 53.7 µV (P = 
.0007). Induced hyperopia with a -10D contact lens had a decrease 
in amplitude from 49.6 µV to 23.07 µV (P = .0094). Induced myopia 
(-20D) had a decrease in amplitude from 49.6 µV to 23.07 µV (P = 
.0229). In 2 of the rabbits with induced high hyperopia with a -20D 
contact lens, there was a significant decrease in amplitude (P < .5).

Discussion

Electroretinograms record the neuronal and non-neuronal 
activity response to light. For an accurate electroretinogram to be 
recorded, you need a proper light stimulus and normal retinal cell 
response [2]. Prior studies have looked at axial length and amount 
of myopia effect on electroretinogram amplitudes. There has been 
reproducible data that reveal a correlation between increased 
myopia and decrease in amplitudes [3-5]. These studies cannot, 
however, correct for any underlying retinal pathology at a cellular 
level that may occur prior to visible retinal pathology. Our study 
focuses on the light stimulus in an induced myopic or hyperopic 
relative to a normal retina. We hypothesize that light which does 
not focus at the optimal focal point in the surface of the retina, as 
seen with large refractive errors, will scatter the optical input and 
reduce the overall intensity of the recorded amplitude. 

With large induced refractive errors (+20D and -20D), there 
was a significant decrease in amplitudes recorded in the majority 
of rabbits tested. These rabbits did not undergo a dilated exam 
pre- electroretinogram refraction, but any limitations to amplitude 
based on underlying pathology would have been reflected in the 
control electroretinograms preformed on the same rabbits. In 
future studies, we could add cycloplegic refractions and dilated 
fundus exams to our study.

Limitations of this study include the study population, small 
study population and old technology. Indeed, when presented, 
several ophthalmologists were critical that the study would 
be much more “interesting” if it were performed on humans. 
Additional concerns were that the contact lens material could have 
contributed to the lower electroretinogram amplitudes, and that 
large refractive errors of 10D and 20D are not that common in the 
human population. 

Our clinical interest in this research is based on the many 
electroretinograms that are performed at our institution in infants 
presenting with nystagmus, with or without clinically decreased 
visual function. As such, the rabbit model closely resembles infants 
given their inability to cooperate and necessity for general anesthesia. 
The concern about the material of contact lenses interfering with 
the electroretinogram results can certainly be addressed in future 
studies by performing “baseline” electroretinograms without 
contacts lenses, and then with a Plano or low power (-0.50 or 
+0.50) contact lens to unequivocally determine the effect of the 
contact lens itself on the electroretinogram findings. There are 
many ophthalmic conditions presenting with nystagmus and poor 
vision in infants that additionally present with high refractive error, 
which was the impetus for this study in determining how abnormal 
refractive error contributes to electroretinogram results.

There may be a correlation between refractive error and recorded 
amplitude, therefore warranting future studies with improved 
electroretinogram technology and pattern electroretinogras. As 
we improve electroretinogram recording, we can improve the 
strength of the study by increasing the number of animals studied 
and additionally experimenting with human models [9-12,15-26]. 

As we continue to research this possible association, we must 
take into consideration the clinical implications. A proper refraction 
on all patients undergoing an electroretinogram is warranted. As 
we better understand if there is an effect on the interface with use 
of a contact lens, we may be able to correct a patient’s refractive 
error prior to diagnostic testing and at a minimum, this should be 
taken into consideration during interpretation. If there is a linear 
correlation, there may be corrective equations or factors to apply 
to amplitudes based on pretesting refractions. 

In our rabbit model, there was a significant decrease in amplitude 
after induced refractive error. As future studies continue to isolate 
the defocus of light and its relationship to recorded amplitudes, 
refractive error should be a consideration in the interpretations of 
electroretinograms. 

Summary

We performed ERG on animals that had normal vision with 
and without different diopter to replicate myopic and hyperopic 
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vision to determine the effect on ERG amplitude. There was an 
observable difference in scotopic amplitude with induced myopia 
and hyperopia.
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