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Abstract
The nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates many important genes that encode of our body antioxidant 

systems and display diverse and important physiological functions. Loss of Nrf2 is associated with an upregulated expression of 
angiotensin converting enzyme 2 receptor (ACE2R) in experimental animals. The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) use ACE2R for the entry in human lung epithelial and enteric cells through binding with its spike glycoprotein (S). ACE2 
upregulation is associated with many diseases, including liver injury, inflammation and insulin resistance, myocardial dysfunction, 
acute decompensated heart failure, and type 2 diabetes. However, deletion or loss of its activity is associated with atherosclerotic 
renal injury and kidney diseases, heart failure, and pulmonary arterial hypertension. Therefore, targeting Nrf2 alone or Nrf2-ACE2 
modulators might be helpful to manage these types of patients with SARS-CoV-2 infection. Adequate pre-clinical and clinical research 
is necessary to establish this concepts. 
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Abbreviations
ACE2R: Angiotensin Converting Enzyme 2 Receptor; ALI: Acute 

Lung Injury; ARDS: Acute Respiratory Distress Syndrome; CTGF: 
Connective Tissue Growth Factor; eNOS: Endothelial NOS; ER: En-
doplasmic Reticulum; GSH: Reduced Glutathione; IL: Interleukin; 
JNK: c-Jun N-terminal Kinase; MAPK: Mitogen-Activated Protein Ki-
nases; NAAE: N-(2 aminoethyl)-1 Aziridine-Ethanamine; NADPH: 
Reduced Nicotinamide Adenine Dinucleotide Phosphate; nCoV-19: 
Novel Coronavirus 2019; NF-κB: Nuclear Factor-κB; Nrf2: Nuclear 
Factor-Erythroid 2 p45-related Factor 2; p-ERK: Extracellular Sig-
nal-Regulated Kinase; PPARγ: Peroxisome Proliferator-Activated 
Receptor-γ; p-STAT3: Phospho Signal Transducer and Activator of 
Transcription 3; ROS: Reactive Oxygen Species; SARS: Severe Acute 
Respiratory Syndrome; TGFβ: Tumor Growth Factor Beta; UPR: 
Unfolded Protein Response

Introduction
The nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regu-

lates genes encoding key components of our body antioxidant sys-
tems as well as multidrug-resistance-associated efflux pumps. It 
plays a key role in both intrinsic resistance and cellular adaptation 
to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 
leads chemical carcinogenesis by promoting futile redox cycling 
of polycyclic aromatic hydrocarbon metabolites or growing resis-
tance to chemotherapeutic drugs. Nrf2 controls genes involved in 
reduced nicotinamide adenine dinucleotide phosphate (NADPH) 
generation, purine biosynthesis and β-oxidation of fatty acids [1].

Too little or downregulation of Nrf2 activity leads to loss of 
cytoprotection, reduce in antioxidant capacity and lowering of 
β-oxidation of fatty acids [2]. However, Nrf2 deficiency was seen 
to reduce aggregation of mutant proteins and preventing reductive 
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stress-induced hypertrophic cardiomyopathy in experimental ani-
mals [3]. In another study, Nrf2 deficiency was found to encounter 
urethane-induced lung tumorigenesis in mice [4]. In contrast, too 
much or an upregulated Nrf2 activity may disturb the homeostat-
ic balance of the redox system due to overproduction of reduced 
glutathione (GSH) and NADPH) enzymes, blunts ROS-based signal 
transduction, causes epithelial cell hyperplasia, results inappro-
priate differentiation of certain cell types, promote resistance to 
anti-cancer drugs and malignancy [4]. The aberrant activation or 
accumulation of Nrf2 also provides advantages to cancer cells and 
poor prognosis, therefore, Nrf2 has emerged as a promising target 
in cancer treatment [2]. 

Type 2 diabetes mellitus has reached pandemic proportions. 
Nrf2 activation has been seen to ameliorate insulin resistance, 
β-cell dysfunction and diabetic complications [5]. Nrf2 dysfunction 
is linked to exert deleterious effects on obesity, impairing neuro-
vascular coupling mechanisms, blood brain barrier (BBB) integrity, 
synaptic function and promoting neuroinflammation [6]. Rojo et al. 
(2017) and Zhang et al. (2018) demonstrated that normal Nrf2 ac-
tivity declines with ageing [7,8]. 

Generally, coronaviruses, including severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) first replicate in lung epi-
thelial cells and enteric cells [9]. The human receptor angioten-
sin-converting enzyme 2 receptor (ACE2R) has been detected as 
a binding receptor with the viral spike glycoprotein (S) of SARS-
CoV-2 [10]. Some additional co-factors are thought to be essential 
for efficient cellular infection by the coronaviruses [11], including 
SARS-CoV-2. It has been depicted that using ACE2 inhibitors might 
be one of the potential targets to inhibit SARS-CoV-2 invasion in 
lung cells. 

Generally, ACE2 catalyses the conversion of angiotensin II to 
angiotensin 1 - 7, results as a vasodilator and exerts protective ef-
fects in the cardiovascular system [12]. ACE2 deficiency impaired 
endothelial function in cerebral arteries in adult mice and aug-
mented endothelial dysfunction during aging [13]. Therefore, the 
ACE2-angiotensin 1 - 7 pathway might provide a useful therapeutic 
target for the treatment of cardiovascular disease, especially in pa-
tients with overactive renin-angiotensin system [12,14]. Kuster., et 
al. (2020) recommended ACE1 and angiotensin II type 1 receptor 
blockers therapies for the patients having heart failure, hyperten-
sion, or myocardial infarction with coronavirus disease 2019 (Co-
vid-19) [12].

However, in a study, it has been seen that the loss of Nrf2 up-
regulated ACE2R expression in renal proximal tubule cells in Akita 
mice [15]. Loss of ACE2 resulted muscle weakness and muscle 
senescence [16], increases systolic blood pressure and promoted 
obesity-hypertension in mice [17], while a resistance  to growth 
hormone decreases systolic blood pressure, leading to hypotension 
in experimental animals [18]. Hypoxia may also increase ACE2 ex-
pression in human [19]. However, ageing endothelial cells, in hy-
poxia/reoxygenation condition was found to down‐regulate ACE2 
along with the ROS overproduction, higher rate of apoptosis, up‐
regulation of the phagocyte NADPH oxidase (Nox2), miR‐18a and 
endothelial NOS (eNOS), and compromised tube formation ability 
[8]. Hypotension and hypoxia are predictors of negative patient 
outcomes and increased in-hospital mortality in non-cardiac arrest 
patients, thus avoidance or mitigation of hypoxia and hypotension 
may be considered during critical cases [20]. Loss of growth hor-
mone receptor upregulates ACE2 expression [18] and inflamma-
tory process may develop growth hormone resistance in our cells 
[21].

Inhaled particulate matter 2.5 (PM2.5) induced severe acute lung 
injury through pulmonary inflammation via phospho extracellular 
signal-regulated kinase (p-ERK1/2) and phospho signal trans-
ducer and activator of transcription 3 (p-STAT3) pathways. ACE2 
knockdown has been evident to increase in pulmonary p-STAT3 
and p-ERK1/2 levels in the PM2.5-induced acute lung injury in ACE2 
gene knockout (ACE2 KO) mice [22]. STAT3 becomes activated af-
ter phosphorylation of tyrosine 705 in response to some ligands, 
including interferons, interleukin (IL-)5, IL-6 as well as via phos-
phorylation of serine 727 by mitogen-activated protein kinases 
(MAPK) [23]. It plays essential roles in the process of atheroscle-
rosis and loss-of-function or mutations in the STAT3 gene results in 
the hyperimmunoglobulin E syndrome, associated with recurrent 
infections [24]. 

Coronavirus infection causes endoplasmic reticulum (ER) 
stress and induces unfolded protein response (UPR) in the infected 
cells, which is closely associated with a number of major signal-
ing pathways, including autophagy, apoptosis, the MAPK pathways, 
innate immunity and pro-inflammatory response  [25]. Generally, 
the MAPK/ERK pathway (also known as Ras-Raf-MEK-ERK path-
way) communicates a signal from a receptor on the cell surface 
to the nuclear DNA of the cell through a signaling molecule, thus 
produces some changes in the cell, including cell division. ERK1/2 

33

Nrf2-ACE2R Pathway to Halt the Entrance of SARS-CoV-2 in Human: A New Strategy in Targeted Therapy

Citation: Muhammad Torequl Islam. “Nrf2-ACE2R Pathway to Halt the Entrance of SARS-CoV-2 in Human: A New Strategy in Targeted Therapy”. Acta 
Scientific Otolaryngology 2.12 (2020): 32-37.



inhibition modulated STAT3 levels in oral squamous carcinoma 
cells [26]. Diminazene aceturate (an anti-infective medication for 
animals that acts against some protozoa such as Babesia, Trypano-
soma, Cytauxzoon, etc.) has been seen to inhibit lipopolysaccha-
ride-induced inflammatory response by activating ACE2/Ang-(1-
7)/Mas axis in human retinal pigment epithelium cells through 
inhibiting p38MAPK, ERK1/2, c-Jun N-terminal kinase (JNK), and 
nuclear factor-κB (NF-κB) pathways [27].

The expression of Nrf2 levels varies depending on physiological 
and pathological context, therefore, properly timed and targeted 
manipulation of the Nrf2 pathway may be helpful to manage the 
ACE2R expression in coronavirus infection [28]. Till date, P4 and 
P5 peptides and N-(2aminoethyl)-1aziridine-ethanamine (NAAE) 
have been marketed that interact with ACE2 and the block SARS 
coronavirus S-mediated cell fusion [29,30]. However, these drugs 
have a narrow spectrum of activity and may affect important bio-
logical functions such as blood pressure regulation. In a study, emo-
din (an anthraquinone derived from genus Rheum and Polygonum), 
was seen to block the SARS coronavirus S protein and ACE2 inter-
action in a dose-dependent manner [31]. In this study, it was also 
seen to inhibit the infectivity of S protein to Vero E6 cells. Kesic., et 
al. (2011) found an inverse relationship between the levels of Nrf2 
expression and influenza A viral entry/replication in human nasal 
epithelial cells [32]. Moreover, melatonin (an anti-inflammatory 
and anti-oxidative molecule) acts against acute lung injury (ALI)/
acute respiratory distress syndrome (ARDS) caused by viral and 
other pathogens, which might be beneficial in SARS-CoV-2 infec-
tion management [33]. Melatonin activates Nrf2 through the MT1/
MT2 receptor pathway, stimulates endoplasmic reticulum-associ-
ated degradation, inhibits NF-κB and endoplasmic reticulum stress 
[34]. The cytoplasmic RNA viruses fine-tune NF-κB signaling at 
multiple levels and profoundly reprogram the host cellular chro-
matin landscape, leading to orchestrate the proper expression of 
genes involved in multiple signaling, immunoregulatory and meta-
bolic processes [35]. Irbesartan prevented ACE2 deficiency-me-
diated pathological hypertrophy and myocardial fibrosis in ACE2 
mutant mice via activation of the peroxisome proliferator-activated 
receptor-γ (PPARγ) signaling and suppression of the tumor growth 
factor beta (TGFβ)-connective tissue growth factor (CTGF)-ERK 
signaling, resulting in attenuation of myocardial injury [36].

ACE2 upregulation is associated with the chronic liver injury 
[37,38], inflammation and insulin resistance [39], myocardial dys-

function [40], acute decompensated heart failure [41], diabetes 
[42,43], while deletion or loss of its activity causes atherosclerotic 
renal injury and kidney diseases [44], heart failure [45] and pulmo-
nary arterial hypertension [46].

A very recent study reports that Nrf2 activation might be an 
important option to reduce viral pathogenesis via inhibiting virus 
entry through upregulation of ACE2 along with the induction of 
gene expression of anti-viral mediators, including retinoic acid-
inducible gene I (RIG-1) and integrative nuclear FGFR1 signaling 
(INFs) pathway, stimulating body anti-oxidant enzymes with a an 
important role in inhibiting NF-κB, apoptosis proteins and toll-like 
receptors (TLRs) expression [47]. For example, the Nrf2 activa-
tors sulforaphane and bardoxolone methyl are already in clinical 
trials. The safety and efficacy profiles in humans, along with their 
cytoprotective and anti-inflammatory effects in a number of pre-
clinical studies, suggesting that these compounds might be armory 
for the deployment to fight against SARS-CoV-2 [48].

Conclusion
Therefore, targeting Nrf2 alone or Nrf2-ACE2 modulators might 

be helpful for these types of patients with Covid-19. However, be-
fore implementing this novel strategy in this current pandemic we 
must address a number of important issues, including clear concept 
on SARS-CoV-2-Nrf2 interactions, other impacts of downregulation 
of ACE2 in human lung, clear concepts on Nrf2 in metabolic repro-
gramming and adaptation of immune cells such as macrophages 
and T cells, pharmacological activation of NRF2 and its impact on 
the viral entrance into the host cell, and so on. Taken together, more 
research is necessary with adequate pre-clinical and clinical trials 
to establish this strategy. 
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