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Abstract
Streptococcus thermophilus is a lactic acid bacterium, which is used in yogurt production, and known for its ability to produce folate, 

exopolysaccharides; thus, making it a highly valuable organism for food biotechnology and probiotic applications. Mathematical 
kinetic models, which extend beyond steady-state predictions in genome-scale models, are useful tools for directing metabolic 
engineering efforts. Although a genome-scale models of S. thermophilus is available, a comprehensive whole-cell kinetic model is 
lacking. In this study, we describe a simulatable kinetic model of S. thermophilus STH_CIRM_65, constructed in an ab initio fashion by 
locating enzymes from the genome sequence and mapping them to corresponding reactions in KEGG. The resulting model, stheVS26, 
encompasses 322 metabolites, 400 enzymes along with their transcription and translation processes, and 336 enzyme reactions. 
This model provides a foundational platform for the simulation and prediction of cellular behaviour, allowing for informed design 
decisions in metabolic engineering.
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Introduction

Streptococcus thermophilus is widely used as a lactic starter 
culture in the dairy industry [1], and is known to produce folate [2]. 
As a starter culture, S. thermophilus produces beta-galactosidase [3], 
which digests lactose - beneficial for lactose-intolerant individuals. 
Its proteolysis of milk proteins generates bioactive peptides [4], 
which have demonstrated anti-hypertensive activities [5,6]. When 
S. thermophilus is consumed and digested, peptides often known 
as “postbiotics” [7] may demonstrate anti-inflammatory properties 

[8], which potentially helpful for managing conditions like irritable 
bowel syndrome (IBS) or antibiotic-associated diarrhoea [9]. 
During fermentation, S. thermophilus produces exopolysaccharides 
(EPS), which are long chains of carbohydrates that act like natural 
thickeners [10,11]. Hence, S. thermophilus has been engineered to 
improve the sweetness [12], and fragrance profile [13] of yoghurt; 
on top of optimizing its EPS production [14]. 

Mathematical modelling plays an essential role in guiding 
metabolic engineering efforts, helping identify viable modifications 
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before experimental work begins [15,16]. Two modelling 
approaches are typically used [17,18]: constraint-based genome-
scale models (GSMs) and kinetic models (KMs). While GSMs are 
widely adopted, they primarily generate predictions of fluxes. KMs 
extend this by providing insights into both metabolic rates and 
yields [19], and they are generally more amenable to performing 
in silico gene knock-ins [20]. These advantages position KMs as an 
especially practical platform for comparing different engineering 
strategies computationally. As a result, the field is seeing a renewed 
push toward building and improving kinetic models to support 
more informed design decisions [21,22].

Although a GSM of S. thermophilus has been published [23], 
there is no KM of S. thermophilus published to-date. As such, this 
study aims to construct a KM of S. thermophilus STH_CIRM_65 
using ab initio approach by identifying enzymes from its genome, 
and identifying the corresponding reaction from KEGG (Kyoto 
Encyclopedia of Genes and Genomes) [24]. The result is a whole 
cell KM of S. thermophilus STH_CIRM_65, named as stheVS26, using 
the nomenclature proposed by Cho and Ling [25], which consists of 
322 metabolites, 400 enzymes with corresponding transcriptions 
and translations, and 336 enzymatic reactions.

Materials and Methods

Identification of Reactome

The genome of Streptococcus thermophilus STH_CIRM_65 (NCBI 
RefSeq assembly GCF_903886475.1; NCBI GenBank Accession NZ_
LR822015.1) was used as source to identify enzymatic genes using 
the process previously described [20,26,27]. Briefly, each enzymatic 
gene was identified as a presence of complete Enzyme Commission 
(EC) number in the GenBank record and mapped into reaction IDs 
via KEGG Ligand Database for Enzyme Nomenclature [24]. For 
example, EC 1.1.1.23 (https://www.genome.jp/entry/1.1.1.23) 
catalyses reactions R01158, R01163, and R03012; where the 
substrates and products of each rection can be identified.

Model development

The model was developed using the principles described in Sim., 
et al. [28]. BioNumbers estimates indicate that an E. coli cell contains 
roughly 3000 RNA polymerase molecules (BioNumbers 106199) 
[29], with around one quarter in an active state (BioNumbers 
111676) [30]. At a polymerization speed of 22 nucleotides per 
second (BioNumbers 104109) [31] and a nucleotide mass of 339.5 

Da, this equates to an RNA output of about 5600 kDa per second 
or 9.3e-18 grams per second. Dividing this by a cell volume of 
7e-16 litres [32] and 4225 coding genes (BioNumbers 105443) 
[33] yields a transcription rate of 2.92 micromolar per gene per 
second. Using an average stability of 107.56 seconds (BioNumbers 
107666) [34] (0.93% decay per second), we obtain the differential 
equation: d[mRNA]/dt = 0.00292 - 0.0093[mRNA]. For translation, 
mammalian data suggest 0.278 peptides produced per transcript 
per second (BioNumbers 106382) [35], while protein turnover in 
E. coli occurs at 1% per hour (2.78×10⁻⁶/s) (BioNumbers 109924) 
[36]. Thus: d[peptide]/dt = 0.278[mRNA] - 0.00000278[peptide]. 
The pathway network was then encoded as ODEs [26,37] with 
median enzymatic parameters from Bar-Even., et al. (kcat = 13.7 
per second; Km = 1 mM) [38], following AdvanceSyn’s model 
format [39].

Model simulation

The constructed model was tested for simulatability using 
AdvanceSyn Toolkit [39]. Initial concentrations of all mRNA and 
enzymes were set to 0 mM. Initial concentrations of all metabolites 
were set to 1 mM except the following which were set to 1000 mM: 
(I) C00001 (Water), (II) C00002 (ATP), (III) C00025 (L-Glutamate), 
(IV) C00031 (D-Glucose), (V) C00037 (Glycine), (VI) C00041 
(L-Alanine), (VII) C00047 (L-Lysine), (VIII) C00049 (L-Asparate), 
(IX) C00051 (Glutathione), (X) C00064 (L-Glutamine), (XI) 
C00065 (L-Serine), (XII) C00073 (L-Methionine), (XIII) C00097 
(L-Cysteine), (XIV) C00133 (D-Alanine), (XV) C00148 (L-Proline). 
The model was simulated using the fourth-order Runge-Kutta 
method [40,41] from time zero to 3600 seconds with timestep of 
0.1 second, and the concentrations of metabolites were bounded 
between 0 millimolar and 1000 millimolar. The simulation results 
were sampled every 2 seconds. 

Results and Discussion

The annotated genome of Streptococcus thermophilus STH_
CIRM_65 consists of 2181 gene; of which, 2009 are protein coding 
sequences. 400 unique EC numbers consisting of 336 enzymatic 
reactions involving 322 metabolites were identified and developed 
into a model based on AdvanceSyn Model Specification [39]. In 
addition, 800 ODEs acting as placeholder for enzyme transcriptions 
and translations were added. 
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Using the AdvanceSyn Toolkit [39], we simulated the 
stheVS26 whole-cell model and confirmed successful execution, 
as documented in Figure 1. This confirms that the model is 
correctly assembled and free from syntax errors as previously 
argued [20,27,42-46], which may often derail large-scale kinetic 
constructions. The model outputs suggest that phosphatidyl-
glycerophosphate is produced then used before stabilizing at a 
lower concentration; however, this stems directly from our use 
of median enzyme parameters across all reactions [47], which 
standardize behaviour and remove biological nuance. Rather than 
a biological conclusion, this discrepancy highlights the importance 
of future kinetic tuning. The contribution here is a fully functioning 
kinetic model of S. thermophilus STH_CIRM_65 that researchers 
may adopt as a platform for implementing organism-specific 
values, integrating downstream pathways, or examining global 
allocation strategies under different environmental conditions [48-
50], or as a system to examine cellular resource allocations [51-54].

Figure 1: Selection of Simulation Results.

Conclusion

We present an ab initio whole cell kinetic model of Streptococcus 
thermophilus STH_CIRM_65 consisting 336 enzymatic reactions 
involving 322 metabolites.

Supplementary Materials

Reaction descriptions and model can be download from https://
bit.ly/stheVS26. 
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