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Abstract
  Bifidobacterium bifidum is a common probiotic in human gut and has been shown to be beneficial in many disorders. B. bifidum 
BGN4 is recognised by US FDA as “generally recognised as safe” for use in infant formulations among other food applications, leading 
to potential engineered probiotics applications. Mathematical kinetic models provide time-course profile of modelled metabolites, 
which can be used to guide metabolic engineering approaches. However, there is no kinetic model of B. bifidum to-date. In this study, 
we present a whole cell simulatable kinetic model of B. bifidum BGN4, bbfMA24, constructed using ab initio approach by identifying 
enzymes from its published genome. The resulting model consists of 236 metabolites, 68 enzymes with corresponding transcriptions 
and translations, and 162 enzymatic reactions; which can be a baseline model for incorporating other cellular and growth processes, 
or as a system to examine cellular resource allocations necessary for engineering.
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Introduction
Bifidobacterium bifidum is a Gram-positive, anaerobic, probiot-

ic bacterium in human gut [1,2]. As a probiotic, it has been shown 
to reduce irritable bowel syndrome [3,4], eczema [5], non-alco-
holic fatty liver disease [6], neuropsychiatric disorders [7], and 
neurodegenerative disorders [8]. In 2019, US FDA has classified B. 
bifidum BGN4 to be “generally recognised as safe” for use in infant 
formulations among other food applications (GRAS GRN No. 814). 
Recently, Kang., et al. [9] engineered B. bifidum BGN4 to produce 
superoxide dismutase, catalase, and interleukin-10 as probiotics 
to remedy irritable bowel syndrome; suggesting potential engi-
neered probiotics applications [10-12].

Mathematical modelling is an important aspect in both meta-
bolic engineering and synthetic biology [13] as it can predict bio-
logical phenotypes under metabolic perturbations, which can be 
used to guide engineering approaches [14,15]. Kinetic models 
(KMs) use ordinary differential equations (ODE) to define the 
rate of change of concentrations of the metabolites involved [16], 
which offers a transient dynamic approach as it provides specific 
solutions in time for steady-state fluxes from the initial concentra-
tion of the substrates [17]. This allows KMs to address the rela-

tionships between flux, enzyme expression, metabolite levels, and 
regulation; and provide time-course profile of modelled metabo-
lites [18-20]. 

However, there is no KM of B. bifidum to-date. As such, this study 
aims to construct a KM of B. bifidum BGN4 using ab initio approach 
by identifying enzymes from its published genome [21], and iden-
tifying the corresponding reaction from KEGG [22]. The result is a 
whole cell KM of B. bifidum BGN4, named as bbfMA24 using the no-
menclature proposed by Cho and Ling [18], which consists of 236 
metabolites, 68 enzymes with corresponding transcriptions and 
translations, and 162 enzymatic reactions

Materials and Methods
Identification of reactome

The genome of Bifidobacterium bifidum BGN4 (Accession num-
ber NC_017999.1) [21] was used as source to identify enzymatic 
genes using the process described in Kwan., et al. [23]. Briefly, each 
enzymatic gene was identified as a presence of complete Enzyme 
Commission (EC) number in the GenBank record, or via the coding 
sequence’s protein ID or locus tag. Each EC number is then mapped 
into reaction IDs via KEGG Ligand Database for Enzyme Nomen-
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clature [22]. For example, EC 1.1.1.23 (https://www.genome.jp/
entry/1.1.1.23) catalyses reactions R01158, R01163, and R03012; 
where the substrates and products of each rection can be identi-
fied.

Model development
Given that the number of RNA polymerase per Escherichia coli 

cell is 3000 (BioNumbers 106199) [24] where about 25% of the 
RNA polymerases are active (BioNumbers 111676) [25] with the 
polymerization rate of 22 ribonucleotides per second (BioNum-
bers 104109) [26], and the average ribonucleotide is 339.5 Dal-
tons, the total mRNA synthesis rate per E. coli cell can be estimated 
as 5600 kDa per second. One Dalton is 1.66054e-24 gram; hence 
5600 kDa per second is 9.3e-18 grams per second. Given that the 
volume of one E. coli cell is about 0.7 cubic micrometres [27] or 7e-
16 litres with 4225 protein-coding genes (BioNumbers 105443) 
[28], the total mRNA synthesis rate can be estimated at 2.92 uM 
per protein-coding genes per second. The average lifespan esti-
mated from 11 E. coli mRNA transcripts is 1.79 minutes (BioNum-
bers 107666) [29] or 107.56 seconds; therefore, 0.93% degraded 
per second. Therefore, the rate law for mRNA concentration can 
be written as d[mRNA]/dt = (0.00292 - 0.0093[mRNA]) mM per 
second. 

Given that the median protein synthesis in mammalian cell 
culture is 1000 peptides per mRNA transcript per hour (BioNum-
bers 106382) [30], which equates to 0.278 peptides per mRNA 
transcripts per second; and the average protein degradation rate 
for E. coli is about 1 percent per hour (BioNumbers 109924) [31], 
which equates to 0.00000278 per second; the rate law for peptide 
concentration can be written as d[peptide]/dt = (0.278[mRNA] - 
0.00000278[peptide]) uM per second.

The reactome was modelled as a set of ordinary differential 
equations (ODEs) where each ODE represented one metabolite 
concentration as previously described [23,32]. The kcat and Km 
were set at 13.7 per second and 1 millimolar, respectively; which 
were the median values from a survey of more than 1000 enzymes 
by Bar-Even., et al. [33]. The model was written in accordance to 
AdvanceSyn Model Specification [34]. 

Model simulation
The constructed model was tested for simulatability using Ad-

vanceSyn Toolkit [34]. Initial concentrations of all mRNA and en-
zymes were set to 0 mM. Initial concentrations of all metabolites 
were set to 1 mM except the following which were set to 1000 mM: 
(i) C00001 (water), (ii) C00002 (ATP), (iii) C00003 (NAD+), (iv) 
C00004 (NADH), (v) C00005 (NADPH), (vi) C00006 (NADP+), (vii) 
C00008 (ADP), (viii) C00011 (carbon dioxide), (ix) C00014 (am-

monia), (x) C00025 (L-glutamate), (xi) C00031 (D-glucose), (xii) 
C00037 (glycine), (xiii) C00041 (L-alanine), (xiv) C00047 (L-ly-
sine), (xv) C00049 (L-asparate), (xvi) C00064 (L-glutamine), (xvii) 
C00065 (L-serine), (xviii) C00073 (L-methionine), (xix) C00097 
(L-cysteine), (xx) C00133 (D-alanine), (xxi) C00135 (L-histidine), 
and (xxii) C00148 (L-proline). The model was simulated using the 
fourth-order Runge-Kutta method [35,36] from time zero to 3600 
seconds with timestep of 0.1 second, and the concentrations of me-
tabolites were bounded between 0 millimolar and 1000 millimolar. 
The simulation results were sampled every 2 seconds. 

Results and Discussion
The annotated genome of B. bifidum BGN4 [21] consists of 1854 

genes, including 1729 protein coding sequences. 463 EC numbers; 
of which, 68 are unique with identifiable reactions from KEGG [22]. 
From these 68 unique EC numbers, 162 enzymatic reactions in-
volving 236 metabolites were identified and developed into a mod-
el based on AdvanceSyn Model Specification [34]. In addition, 136 
ODEs acting as placeholder for enzyme transcriptions and transla-
tions were added. 

The resulting model, denoted as bbfMA24, was simulated using 
AdvanceSyn Toolkit [34]. Our simulation results (Figure 1) sug-
gests that the model is free from syntax error as the presence of 
simulation results suggests that the constructed model can be sim-
ulated. Although our simulation results show that production of hy-
drogen sulfide is higher than that of total protein pool, this cannot 
be taken at face value as all enzyme kinetics (turnover number and 
Michaelis-Menten constant) are kept the median levels [33]. Hence, 
we present a simulatable whole cell KM of B. bifidum BGN4, which 
can be a base template for incorporating other cellular and growth 
processes [37-39] or as a system to examine cellular resource al-
locations [40-43].

Figure 1: Selection of Simulation Results.
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Conclusion
In this study, we present an ab initio whole cell kinetic model 

of Bifidobacterium bifidum built from the enzymes found in the ge-
nomic sequence of B. bifidum BGN4. The resulting kinetic model, 
bbfMA24; comprising of 236 metabolites, 68 enzymes with cor-
responding transcriptions and translations, and 162 enzymatic 
reactions.

Supplementary Materials
Reaction descriptions and model can be download from 

https://bit.ly/bbfMA24. 
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