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Abstract
   Natural antioxidants (NATOs) derived from sources like rosemary, green tea, and oregano have acquired extensive attention for 
their efficacy in preserving edible oils, presenting a promising alternative to synthetic antioxidants (ATOs) due to their superior 
safety profile. However, integrating NATOs into the food industry faces challenges stemming from the variability in their chemical 
composition, necessitating prolonged stability tests based on peroxide values (PV). This study explores the predictability of PV in 
peanut oil using three chemical parameters (total phenolic content, total antioxidant content, and total carotenoid content), one 
physical parameter (partition coefficient), and storage duration. Six machine learning classifiers (logistic regression, multilayer 
perceptron, radial basis function, Gaussian Naïve Bayes classifier, support vector machine, and decision tree) were employed. The 
results have shown significant correlations between the chemical parameters and antioxidant activity. Our findings indicate that PV 
in peanut oil can be accurately predicted using these parameters and storage duration, with the multilayer perceptron demonstrating 
the highest predictive performance, achieving an accuracy of at least 89.8% in determining whether PV remains within acceptable 
limits post-storage.
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Introduction

Oil deteriorates over storage time. Oxidation, including auto-
oxidation, is the main cause of deterioration [1] and can be mea-
sured using peroxide value (PV) as indicator of freshness [2]. An-
tioxidants (ATOs) are widely used to extend shelf-life of oil [3]. 
Tocopherol (vitamin E); together with synthetic ATOs [4]; such as 
BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), 
and TBHQ (tert-butylhydroquinone); are standard antioxidant 
regimen adopted in food industry [5] but long-term exposure to 
these synthetic ATOs has raised concerns, leading to the pursuit 
for natural alternatives [6, 7]. Natural ATOs (NATOs); such as rose-
mary, green tea and oregano; have been examined for their protec-
tive effects on foods [8-10]. Their comparable efficacy to synthetic 
ATOs and much safer health profile make them viable alternative 
food preservatives [11].

Mixtures of NATOs may be synergistic, leading to bringing 
down the cost [12]. However, finding the right blend of NATOs has 
been tedious and expensive, typically through trials and errors 

[13]. Machine learning (ML) has been shown to be able to pick up 
patterns from the input data to make reliable predictions for fu-
ture/unknown events [14-17]; hence, may be useful in identifying 
optimal mixtures of NATOs or in predicting the usability of oil after 
storage via PV.

In this study, we examined the predictability of PV of peanut 
oil from 3 chemical parameters [(a) TPC (total phenolic content), 
(b) TAC (total antioxidant content), and (c) TCC (total carotenoid 
content)], 1 physical parameter (logP, also known as partition co-
efficient, which can be used to estimate the solubility of NATOs in 
peanut oil), and storage days; using 6 machine learning classifiers 
(MLCs) [(a) logistic regression (LR), (b) multilayer perceptron 
(MLP), (c) radial basis function (RBF), (d) Gaussian Naïve Bayes 
classifier (GNB), (e) support vector machine (SVM), and (f) deci-
sion tree (DT)]. TPC, TAC, and TCC have been suggested to be signif-
icantly correlated to antioxidant activity [18]. Our results suggest 
that PV of peanut oil can be predicted by TPC, TAC, TCC, logP, and 
number of days in storage; and MLP is the best performing MLC to 
predict whether PV will be within acceptable limits after storage 
with accuracy ≥ 89.8%.
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Figure 1: The sequential steps from the selection of NATOs and the machine learning modelling.

Chemical Materials and Methods

•	 Selection of NATOs: Synthetic antioxidants tocopherol and 
ascorbyl palmitate were employed as the reference control in 
this study. In addition, 14 natural antioxidant extracts along 
with their paired combinations, resulting in a total of 136 per-
mutations had been tested. These extracts (Table 1) included 
green tea extracts (extracted with ethanol and water), rose-
mary extracts (extracted with ethanol and water), oregano 
extracts (extracted with ethanol and water), kelp extracts, 
grapeseed extracts (extracted with ethanol), grapeseed cap-
sules, blueberry extracts (extracted with ethanol), cranberry 
extracts (extracted with ethanol), goji berry (extracted with 
water), pine bark extracts (extracted with ethanol), and tur-
meric extracts (extracted with ethanol).

•	 Chemical testing methods: To examine their properties, 
each extract (or combination) will be dissolved in a solution 
of octanol and water in a 1:1 ratio (Figure 2). Subsequently, 
the layers of water and octanol will be separated for further 
analysis. The LogP value will be determined using the water 
layer, while the octanol layer will be utilized to measure TAC, 
TCC, and TPC. The logP will be directly determined using our 
own method. The total antioxidant activity will be assessed 
using the DPPH (1,1-diphenyl-2-picryl-hydrazyl-hydrate) as-
say, expressed as mmol Trolox equivalent per 100 grams of 
the samples. Folin-Ciocalteu’s reagent will be employed to as-

sess TPC, expressed as mg of gallic acid equivalent per gram 
of sample. TCC will be directly measured using a microplate 
reader, expressed as mg/kg. 

•	 Preparation of edible oil and peroxide value testing: The 
peroxide value serves as an indicator reflecting the extent of 
lipid peroxidation within a sample, indicative of the formation 
of peroxides due to oxidation, which can result in rancidity 
and a decline in quality. Higher peroxide values signify height-
ened lipid peroxidation and diminished sample quality. In this 
study, freshly pressed peanut oil was acquired utilizing a table-
top oil press machine. Peanuts were placed in the upper con-
tainer of the machine, where they were ground and pressed 
to extract their oil content, with residual peanut material col-
lected aside. The freshly pressed peanut oil underwent cen-
trifugation to eliminate any solid peanut particles. To evaluate 
the PV values of the oil samples, each extract (or combination) 
was dissolved in a 1:1 octanol/water solution. Subsequently, 
certain amounts of the octanol layer, with or without extracts, 
was blended with peanut oil. These treated peanut oil samples 
were subjected to an accelerated stability test in an oven set 
at 55°C to assess their stability under elevated temperatures. 
The changing peroxide values were continuously monitored 
over time, with assessments conducted every 3 to 4 days, of-
fering a detailed and comprehensive overview of the oxidation 
process of edible oil. The ferric thiocyanate method was em-
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ployed to determine the PV values (expressed in milliequiva-
lents of peroxide per kilogram of sample).

Machine learning methods

•	 Regression analysis: Ordinary linear regression (OLR) 
[19] was used to evaluate the predictability of PV after a 
period of storage from TPC, TAC, TCC, logP, and storage 
days; using the following model: PV = β1 TPC + β2 TAC + β3 
TCC + β4 logP + β5 Days + β0. OLR was also used to evaluate 
the predictability of each of TPC, TAC, TCC, and logP from 
NATOs using the following model: { TPC | TAC |  TCC │ logP 
} = β1 AP + β2 TO + β3 GTW + β4 GTE + β5 RMW + β6 RME + 
β7 ORW + β8 ORE + β9 KP + β10 GSC + β11 GSE + β12 BBE + β13 
CBE + β14 GJW + β15 PBE + β16 TME + β0 , where the indepen-
dent t variables are mass of NATOs. By merging the 2 sets 
of OLRs, the mass of NATOs and storage days were used to 
predict the resulting PV after a period of storage.

•	 Machine learning classification of PV thresholds: TPC, 
TAC, TCC, logP, and storage days were used to classify 
whether the PV will be acceptable after a number of days 
in storage. The numerical values of TPC, TAC, TCC, and 
logP were categorized to decile scores [20,21] where val-
ues lower than the 10th percentile were scored as 1. Hence, 
values from and including 90th percentile to less than 100th 
percentile were scored as 10, whereas values at 100th per-
centile were scored as 11. This allows for scoring of poten-
tial values above the experimental values obtained in this 
study as 11 or 100th percentile and above. PV values were 
binary coded to whether the value was below a specific 
percentile of PV values - “1” as below a specific percentile 
of PV value and “0” as at or above a specific percentile of PV 
value. The percentile thresholds were from 10% to 90%, at 
10% increment; resulting in 9 thresholds (PV10 to PV90). 
The coded data were classified using 6 MLCs [(a) logistic 
regression (LR), (b) multilayer perceptron (MLP), (c) radial 
basis function (RBF), (d) Gaussian Naïve Bayes classifier 
(GNB), (e) support vector machine (SVM), and (f) decision 
tree (DT)]. LR [22], MLP [23], and RBF [24] from IBM SPSS 
were used. GNB [25], SVM [26], and DT [27] from BactClass 
[28] were used.

Results and Discussion
Natural antioxidants can predict peroxide value: OLR analysis 
shows PV of oil after a period of storage can be predicted by TPC, 
TAC, TCC, logP, and storage days (r2 = 0.774; F2,2658 = 1817.947, p-val-
ue < 1e-100) as PV = (-0.0616TPC) + (-0.0428TAC) + (0.00366TCC) 
+ (-1.758logP) + (2.806Days) + 4.230. This result is plausible as 
TPC [29] and TCC [30] are correlated to PV, and TAC has good cor-
relation to TPC [31]. Similarly, TPC (r2 = 0.978; F16,2647 = 13294.231, 
p-value < 1e-100), TAC (r2 = 0.936; F16,2647 = 2433.939, p-value < 

1e-100), TCC (r2 = 0.942; F16,2647 = 2697.836, p-value < 1e-100), and 
logP (r2 = 0.790; F16,2647 = 623.039, p-value < 1e-100) can be pre-
dicted independently from NATOs using the coefficients listed in 
Table 2. 

Given that all the regression models are highly significant (p-
value < 1e-100), PV after a period of storage is predictable from 
mass of NATOs and storage days (r2 = 0.833; F17,2646 = 778.602, 
p-value < 1e-100) with the following linear regression model: 
PV = (-1.680AP) + (-0.095TO) + (-0.797GTW) + (-1.955GTE) + 
(-0.301RMW) + (-1.622RME) + (0.087ORW) + (-0.079ORE) + 
(0.171KP) + (-0.072GSC) + (0.035GSE) + (-0.099BBE) + (-0.140CBE) 
+ (-0.044GJW) + (-0.172PBE) + (0.405TME) + (2.809Days) + 
10.799. The regression coefficients represent the efficiency of NA-
TOs in reducing PV; hence, regression analysis suggests that GTE 
(green tea ethanol) is most effective in reducing PV while TME (tur-
meric ethanol) is least in reducing PV of peanut oil.

PV thresholds can be predicted using machine learning al-
gorithms. Given that PV is often used as an indicator of oil fresh-
ness [2, 32], a practical question to ask will be whether peanut oil 
is within acceptable PV given the number of days in storage and 
NATO parameters (TPC, TCC, TAC, and logP). As the PV and NATO 
parameters are coded as decile scores, Table 3 shows the corre-
spondence of value ranges to decile scores.

As PV values were coded as deciles from 1st decile (correspond-
ing to 10th percentile) to 9th decile (corresponding to 90th percen-
tile), the upper and lower boundaries of random prediction accu-
racy can be formed by assuming all PV values to be within range. 
For example, if all PV values of 8th decile (corresponding to 80th per-
centile) are assumed to be above the 8th decile, then the accuracy 
will be 80% since only 80% of the PV values are above 8th decile. 
Conversely, all PV values of 8th decile are assumed to be below the 
8th decile, then the accuracy will be 20% since only 20% of the PV 
values are below 8th decile. Hence, this 80% / 20% accuracy form 
the upper and lower boundary of random prediction accuracy can 
be established for 8th decile of PV values. Thus, any classifier that 
perform above 80% accuracy will be deemed to perform better 
than random; therefore, able to predict PV thresholds given the 
number of days in storage and NATO parameters.

Figure 2: Experimental determination of LogP, TCC, TPC and TAC.
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Percentile Range Decile Score TPC Range TCC Range TAC Range Log P Range PV Range
[0, 10) 1 [0.00, 7.11) [0.00, 0.65) [0.00, 0.24) < -3.16) < -0.32

[10, 20) 2 [7.11, 10.51) [0.65, 9.60) [0.24, 2.82) No range [-0.32, 2.06)
[20, 30) 3 [10.51, 14.18) [9.60, 22.21) [2.82, 4.36) [-3.16, -3.00) [2.06, 5.91)
[30, 40) 4 [14.18, 21.51) [22.21, 31.48) [4.36, 10.92) [-3.00, -1.92) [5.91, 11.20)
[40, 50) 5 [21.51, 29.94) [31.48, 39.49) [10.92, 80.15) [-1.92, -1.34) [11.20, 20.01)
[50, 60) 6 [29.94, 36.09) [39.49, 48.07) [80.15, 113.72) [-1.34, -1.07) [20.01, 29.62)
[60, 70) 7 [36.09, 81.06) [48.07, 57.69) [113.72, 130.08) [-1.07, -0.33) [29.62, 43.03)
[70, 80) 8 [81.06, 228.65) [57.69, 79.54) [130.08, 165.51) [-0.33, -0.24) [43.03, 56.91)
[80, 90) 9 [228.65, 252.33) [79.54, 224.45) [165.52, 203.87) [-0.24, -0.07) [56.91, 71.79)

[90, 100) 10 [252.33, 538.88) [224.45, 4424.31) [203.87, 252.54) [-0.07, 0.57) [71.79, 88.81)
≥ 100 11 ≥ 538.33 ≥ 4596.69 ≥ 544.27 ≥ 3.00 ≥ 150.59

Table 3: Binning of TPC, TCC, TAC, log P, and PV values into decile scores for classification. The range [x, y) represents that the range is 
between x and y, including x but excluding y; which can also be represented as x ≤ value < y.

Independent 
Variables

Coefficients
TPC Model TAC Model TCC Model Log P Model

Intercept (β0) 103.253 69.789 398.517 -2.153

AP -1.991 5.590 -10.322 0.146
TO -3.269 7.387 -11.351 0.138

GTW 2.227 4.371 -12.183 0.019
GTE 12.262 12.501 -8.892 0.060

RMW -3.082 -2.657 -11.647 0.015
RME 12.569 13.992 1.386 0.062
ORW -2.894 -2.090 -11.855 0.018
ORE -3.001 -2.178 -10.152 0.000
KP -3.330 -2.185 -11.838 -0.036

GSC -2.334 -1.572 -10.690 0.066
GSE -2.501 -1.456 -9.547 -0.023
BBE -3.004 -2.146 -10.255 -0.028
CBE -2.862 -2.097 -9.888 -0.023
GJW -3.218 -2.250 -11.987 -0.015
PBE -2.893 -1.847 -8.390 -0.003
TME -1.627 1.726 245.696 0.145

Table 2: Regression coefficients of models to predict TPC, TAC, 
TCC, and log P from NATOs.

Threshold DT GNB SVM LR MLP RBF
PV10 55.8 (8.13) 90.0 (0.04) 90.0 (0.04) 92.0 93.7 92.0
PV20 51.0 (8.75) 78.5 (1.62) 80.0 (0.04) 90.8 95.8 89.9
PV30 46.7 (7.58) 65.8 (2.48) 70.0 (0.02) 91.5 96.1 87.6
PV40 54.5 (4.15) 65.1 (3.24) 66.0 (3.06) 89.8 94.2 85.9
PV50 47.0 (6.46) 62.1 (4.28) 65.7 (3.90) 90.4 93.2 87.8
PV60 54.8 (5.74) 62.6 (4.13) 63.6 (3.13) 90.3 94.7 88.7
PV70 58.9 (6.11) 66.4 (3.08) 70.0 (0.02) 90.0 93.8 86.8
PV80 70.6 (4.11) 72.4 (2.71) 80.0 (0.04) 92.2 94.8 85.7
PV90 73.3 (7.20) 90.0 (0.04) 90.0 (0.04) 92.8 95.6 89.4

Table 4: Mean accuracy of classifiers on PV thresholds.Values in backets are standard errors from 5-fold cross-validation, if given by 
the system. Green coloured cells represent accuracies above upper boundary of random prediction. Orange coloured cells represent 

accuracies below lower boundary of random prediction.

No. Extracts Abbreviation No. Extracts Abbreviation
(a) Ascorbyl 

Palmitate
AP (i) Kelp KP

(b) Mixed To-
copherol

TO (j) Grapeseed 
Capsule

GSC

(c) Green Tea 
(Water)

GTW (k) Grapeseed 
(Ethanol)

GSE

(d) Green Tea 
(Ethanol)

GTE (l) Blueberry 
(Ethanol)

BBE

(e) Rosemary 
(Water)

RMW (m) Cranberry 
(Ethanol)

CBE

(f) Rosemary 
(Ethanol)

RME (n) Goji (Water) GJW

(g) Oregano 
(Water)

ORW (o) Pine Bark 
(Ethanol)

PBE

(h) Oregano 
(Ethanol)

ORE (p) Turmeric 
(Ethanol)

TME

Table 1: The abbreviation table for the project.
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Based on this argument, our classification results show that LP, 
MLP, and RBF perform better than random for all nine PV thresh-
olds while GNB, and SVM perform better than random for three PV 
thresholds (PV40, PV50, and PV60); LR consistently outperforms 
DT, GNB, and SVM; and DT performs worse than random for PV50 
(Table 4). Our results are consistent with a study suggesting that 
LR can outperform other MLCs, including SVM and artificial neural 
networks (ANNs), in classifying diabetes patients [33]. MLP and 
RBF [34] are different types of ANNs but our results show that MLP 
outperforms LR (MLP-LP̅ = 3.6% with a standard error of 0.38%; 
paired t-test p-value = 0.0000125) but not RBF (LP-RBF̅ = 2.9% 
with a standard error of 0.64%; paired t-test p-value = 0.00197); 
hence, suggesting that LR may outperform only specific ANNs.

Our results also show that ANN outperforms SVM but this 
cannot be generalized as one study [35] suggests that ANN out-
performs SVM while another study [36] suggests that SVM out-
performs ANN. Similarly, contradictory results from studies com-
paring LR and ANN can be found [37, 38]. Naïve Bayes classifiers, 
of which GNB is an example, have also been expected to perform 
better than DT [39] in certain cases [40]. Similarly, an earlier study 
also suggests that LR can outperform DT [41] but a recent study 
suggests that an ensemble of DTs may outperform LR [42]. Taken 
together, this suggests that the performance of various MLCs can-
not be generalized and is highly dependent on situation. As such, 
methods to combine different MLCs have emerged [43-45]. Never-
theless, our results suggest that PV thresholds can be predicted us-
ing MLCs, and MLP is the best performing MLC to predict whether 
PV will be within acceptable limits after storage with accuracy ≥ 
89.8%.

Conclusion
PV values of peanut oil can be predicted by four chemical and 

physical parameters of NATOs (TPC, TAC, TCC, and logP), and num-
ber of days in storage, and MLP is the best performing MLC to pre-
dict whether PV will be within acceptable limits after storage with 
accuracy ≥ 89.8%.

Supplementary Materials
Data file for this work can be downloaded at https://bit.ly/

NATO_Oil.
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