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Abstract
   The World Health Organization has reported that in 2020 approximately 55 million people live with dementia worldwide with 10 
million new cases every year. Alzheimer’s disease (AD) is the most common form of dementia and contributes to 60-70% of dementia 
cases. The role of gut microbiota with host metabolic regulation that acts as a bridge between the food lipids and the health of AD 
individuals has become of major concern. Microbiome composition has been linked to neurodegenerative disease and plays a critical 
role in the gut and brain axis. Microbial fermentation may release short-chain fatty acids such as butyric acid that have a major influ-
ence on the gut-brain axis with effects on brain amyloid beta levels and plaque deposition. Butyric acid is involved in brain histone 
acetylation and deacetylation plays an important role in metabolic regulation, brain amyloidosis and the pathogenesis of AD. Several 
mechanistic studies are required to determine the underlying mechanisms for effective and safe probiotic treatment for AD and the 
relevance of gut dysbiosis may be the cause of the induction of the pathogenesis of AD. The safety of probiotic therapy for AD patients 
requires investigation with relevance to the induction of dyslipidemia and the release of bacterial lipopolysaccharides and amyloid 
beta from gram-negative bacteria needs to be controlled in these probiotic formulations. In this review, we will summarize the 
knowledge of the characteristics of the gut microbiota and the communication pathways of the microbiota-gut-brain axis, analyse the 
role of dysbiosis of the gut microbiota in the pathogenesis of AD, and highlight the modification of gut microbiota composition as a 
preventive or therapeutic approach for AD) and the benefits, limitations and safety of gut microbiota and probiotics on the metabolic 
regulation by LPS and lipids are required to delay or reverse the pathogenesis of Alzheimer’s disease.
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GABA: Gamma-aminobutyric acid; ENS: Enteric Nervous System; 
TMP: Traditional Persian Medicine; MD: Mediterranean Diet; CNS: 
Central Nervous System; ANS: Autonomic Nervous System; HPA: 
Hypothalamic-Pituitary-Adrenal

Introduction

The human body is inhabited by a wide variety of commensal 
microorganisms called microbiota. Many microbes colonize the 
skin and mucosal cavities (nasal, oral, pulmonary, and vaginal) 
but the gastrointestinal tract (GI) has trillions of bacteria, fungi, 
and viruses in symbiosis with the host [1,2]. According to recent 
research, the gut microbiota is not limited to the intestinal tract. 

There is a strong correlation between GI tract communication and 
central nervous system communication. Microbiota-gut-brain axis 
concepts have been developed as a result of research showing that 
gut microbiota has a major influence on brain processing [3,4].

A significant component of this crosstalk is the biochemical 
messengers produced by the microbiota. Different mechanisms 
can be used to facilitate bidirectional communication between the 
microbiota and its mammalian host. Short chain fatty acids (SCFAs) 
produced by the intestinal microbiota affect CNS development and 
homeostasis, immune response, host metabolism and gastrointes-
tinal physiology [5]. An optimum state of microbiota is indispens-
able for homeostasis with SCFA important in the regulation of body 
weight, glucose metabolism, neurotropism, immunomodulation, 
hypersensitivity, inflammation, and in regulating normal growth 
and development. Genetic susceptibility and resistance to diseas-
es are determined by the composition of bacteria in individuals. 
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Through their interaction with the gut-brain axis gut microbiota is 
thought to influence cognitive processes through the hypothalam-
ic-pituitary-adrenal (HPA) axis, the central stress response system 
and immunogenic mechanisms [6]. Microbiota-host interactions 
have markedly improved in recent years but we still need to bet-
ter understand gut-brain-microbiota interactions. New therapeutic 
targets may be developed by understanding the precise roles that 
these metabolites play in gut-brain interactions. SCFAs have the 
ability to directly and indirectly regulate CNS processes which in 
turn affect behavior and cognition for the treatment of CNS disor-
ders [7]. These metabolites affect the growth and maintenance of 
healthy brain function and can also be used as dietary therapies. 
This current review gives information with relevance to gut-micro-
biota-brain interactions and Alzheimer’s disease.

Food and nutrition guidelines for handling and processing of 
dairy probiotic products, fresh fruit, bread, meat and vegetables are 
essential and many food products may require cold preservation 
procedures to prevent minimal bacterial contamination. Bacterial 
contaminations with gram negative bacteria is associated with the 
generation of toxic lipopolysaccharides (LPS) structures that cause 
inflammation, hypercholesterolemia and amyloid beta aggregation 
[8,9] with relevance to neurodegeneration. There have been several 
publications on probiotics and the beneficial effects on delaying the 
progression for Alzheimer’s disease (3-5). Probiotics have recent-
ly been suggested as potential therapeutic options for AD due to 
the close relationship between gut microbiota and AD. A probiotic 
is defined as a live microorganism that confers health benefits to 
the host when administered in adequate amounts. The presence 
of gram positive and gram-negative bacteria in probiotic products 
[10-15] such as dairy products (yogurt, cheese, etc.) to correct in-
testinal microflora and dysbiosis is now of major research interest. 
This mini-review discusses the role of microbiota, short chain fatty 
acids and LPS (gram negative bacteria) with relevance to the patho-
genesis of Alzheimer’s disease.

Microbiota-gut-brain axis 
The majority of intestinal microbes are bacteria [16]. The three 

major phyla of gastrointestinal microbiota are Firmicutes, Bacte-
roidetes, and Actinobacteria [17]. There is a unique gut microbiota 
profile for each individual. Several nutrients and metabolites are 
extracted, absorbed and synthesized by the gut microbiota (bile 
acids, lipids, amino acids, vitamins, and SCFAs). Extensive study 
has focused on the immunoregulatory influence of the commensal 
gut microbiota on the both innate and adaptive immune systems 
[18]. Over the past decade significant research has been conducted 
on gut microbiota and gut-brain communication. A gut-brain axis 
(GBA) involves bidirectional communication between the central 
nervous system and the enteric nervous system both of which in-
fluence gut microbiota interaction [19]. In-depth research is now 
being performed on the microbiota-gut-brain axis which involves 

two-way communication mechanisms including cytokines, im-
munological responses, hormonal responses and neuronal signals 
[20]. Through humoral action the gut microbiome can affect brain 
activity via the vagus nerve. Consequently gut microbiota dysbiosis 
could result in cerebral malfunction [21].

Inflammatory metabolites and cytokines released by gut dys-
biosis affect the blood-brain barrier (BBB) and the size of the 
brain. BBB permeability is controlled by innate immune cells such 
as mast cells and microglia and is sensitive to pro-inflammatory 
mediators, increased BBB permeability may make it easier for im-
mune cells or mediators to enter the brain accelerating neuroin-
flammation [22].The gut and brain are bidirectionally connected 
through the central nervous system (CNS), autonomic nervous sys-
tem (ANS), hypothalamic pituitary adrenal axis (HPA) and enteric 
nervous system (ENS) [23]as shown in Figure 1. The gut contains 
500 million neurons that connect the gut with the brain. The vagus 
nerve is one of the largest nerves that connects the gut with the 
brain in a bidirectional manner [24,25].

A surprising number of neurotransmitters are produced by our 
gut cells as well as by microbes. Serotonin is produced by the gut 
to promote optimism, happiness and satisfaction [26] as is gamma-
aminobutyric acid (GABA) a neurotransmitter that controls feel-
ings of fear and anxiety [27]. Trillions of microbes residing in our 
gut produce various chemicals that affect the brain [28]. Gut micro-
biota also metabolize bile acids and amino acids to produce other 
chemicals that affect the brain [29]. There is a connection between 
the gut-brain axis and inflammation through the immune system. 
Inflammatory toxins produced by gram negative microbes such as 
LPS can cause various brain disorders like dementia, Alzheimer’s 
disease and Schizophrenia [30].

The interactions between the gut microbiota and the CNS has 
been discussed in several research studies [31-33]. Research in 
animals has shown a close association between the hippocampus 
with the gut microbiota and probiotic bacteria [34]. The impact of 
microbiota on the hippocampus has been reported in aged mice 
[35]. The results from these experiments show that age-associated 
shifts of the microbiota have an impact on protein expression and 
key functions of the CNS. These finding are of importance to the gut 
brain axis in ageing and may provide future therapies to restore a 
young-like microbiota to improve cognitive functions by modula-
tion of hippocampal synaptic plasticity and improve the quality of 
life in the elderly [36]. In other studies the effects of the age related 
changes in composition of gut microbiota is associated with the in-
creased content of Gram-negative bacteria like Enterobacteriaceae. 
The release of LPS from these Gram-negative bacteria acts as en-
dotoxin with the level of SCFAs (acetate, butyrate, and propionate) 
in the intestine of aged people reduced compared to young people 
[37].
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Figure 1: Schematic diagram illustrating the gut-brain axis. Through the Central Nervous System (CNS), Autonomic Nervous System 
(ANS), Hypothalamic Pituitary Adrenal Axis (HPA),Immune System and Enteric Nervous System (ENS), the gut and brain are bidirec-

tionally linked. Our gut microbiota metabolizes bile acids, amino acids, gut hormones, to produce other chemicals that affect the brain. 
There is a connection between the gut-brain axis (GBA) and inflammation through the immune system. Inflammatory toxins produced 
by microbes such as Lipopolysaccharide (LPS) can cause various brain disorders like dementia, Alzheimer's disease, Tumors, Schizo-

phrenia, several Neurodevelopmental and Neuropsychiatric disorders.

Gut microbiota and metabolites on brain function
Microbes live in the gut of humans in complex communities 

and there are numerous metabolites produced by gut bacteria that 
may cause encephalotoxicity. In various bacteria, GABA, serotonin 
(5-HT), histamine, and dopamine are produced. These compounds 
function as neurotransmitters and neurotransmitter precursors in 
mood, behaviour and cognition [38]. The host and its gut microbio-
ta produce a variety of metabolites including SCFAs that are crucial 
for the host’s health. Acetate, propionate and butyrate are the most 
common SCFAs that function through G protein-coupled receptors 
or histone deacetylases [39].

Short chain fatty acids
SCFAs are organic monocarboxylic acids with up to six carbon 

atoms and are the major metabolites produced by bacterial fer-
mentation of dietary fiber in the gastrointestinal tract. SCFA play 
a critical role in the microbiota-gut brain axis as most of them 
contain acetate (C2), propionate (C3), and butyrate (C4) [40-42]. 
Monocarboxylate transporters (MCTs) are responsible for absorb-
ing SCFAs into the colon by H+-dependent or sodium-dependent 
monocarboxylate transporters [43]. The effects of SCFAs on gut 
health range from maintaining intestinal barrier integrity, mucus 
production and protection against inflammation to reduce the risk 
of cancer [44].

Despite the paucity of studies on physiological concentrations 
of SCFAs in the brain, the three metabolites are all measurable in 
cerebrospinal fluid (CSF), typically in the range of 0-171 M for ac-
etate, 0-6 M for propionate, and 0-2 M for butyrate. Research con-
ducted indicates [45], the high expression of MCTs in endothelial 
cells may promote SCFA crossing of the blood brain barrier (BBB). 
As reported by these studies [46], human brain tissue had average 
concentrations of 17.0 butyrate and 18.8 propionates pmol/mg. 
The SCFAs appear to be crucial to BBB function but also for main-
taining its integrity which is closely connected with the careful 
regulation of the flow of molecules and nutrients from the blood-
stream to the brain and plays a crucial role in brain development. 
Based on the experiment conducted by Germ-free mice showed 
decreased expression of tight junction proteins including claudin 
and occludin which resulted in a more permeable BBB from infan-
cy through adulthood supporting the hypothesis that SCFAs affect 
BBB function [47].

Short chain fatty acids and the blood brain barrier
The BBB plays a crucial role to maintain the central nervous 

system’s homeostasis [48]. In addition to endothelial cells and 
pericytes the BBB is composed of glial cells (oligodendrocytes, mi-
croglia, and astrocytes) as well as smooth muscle cells. The disrup-
tion of the BBB plays a crucial role in the onset and progression of 
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AD causing microglial activation to speed up neuroinflammation, 
oxidative stress and neuronal death. The GPR41 receptor for SCFAs 
has been found on endothelial cells. In addition to develop a healthy 
BBB SCFAs aid in the defence and repair of the BBB during diseas-
es. The BBB permeability can be decreased in germ-free animals 
with sodium butyrate therapy [49]. NF-B nuclear translocation is 

inhibited by valproic acid, tight-junction proteins are destroyed 
and matrix metalloproteinase-9 is induced thereby reducing BBB 
breakdown and brain edema caused by middle cerebral artery 
blockage. SCFAs have been shown to adversely affect the BBB in AD 
as demonstrated in figure 2 and further research is required [50].

Figure 2: An overview of SCFAs' impact on Alzheimer's.

SCFAs from the gut microbiota passes the blood-brain barrier to 
reach the CNS and activates the CREB/BDNF signalling pathway and 
expressing memory-consolidation genes, they work on neurons to 
promote neuronal repair and regeneration. Additionally, by block-
ing the MAPK, NF-B, and other proinflammatory pathways in dis-
ease-related microglia and astrocytes, inflammatory factor release 
is decreased. Additionally, SCFAs take role in the pathogenic control 
of the Aβ and tau proteins, which ultimately lessens cognitive de-
cline in AD. NF-B stands for nuclear factor-B, CREB for cyclic-AMP 
response element binding protein, BDNF for brain-derived neuro-
trophic factor, and MAPK for mitogen-activated protein kinase.

Gut microbiota dysbiosis linking Alzheimers disease
Diet, infectious agents, antibiotics and xenobiotics are constant-

ly exposed to the gut’s unique and dynamic microbiome [51,52]. 
Gut microbiota (GM) play many important roles in a healthy body 
including protecting against pathogenic organisms. During colono-
cyte differentiation and regeneration short-chain fatty acids (SC-
FAs) are produced by the microbiota by fermenting complex plant 

carbohydrates [53]. In addition to synthesize essential vitamins 
and amino acids GM also regulates fat metabolism and plays a role 
in immune system and its development [54,55].

Multiple factors can contribute to the instability of GM includ-
ing infections, diet, exercise, sleep patterns, antibiotic exposure 
and multimorbidity. Dysbiosis of the gut microbiota is defined as 
an imbalance associated with poor outcomes [56] in which neces-
sary microbial input is lost or ineffective and pathogenic microbes 
are spread. Multiple disease states result from dysbiosis and its 
pro-inflammatory effects [57]. GM dysbiosis has been associated 
with various immune-mediated disorders. There are a variety of 
chronic inflammatory diseases that can occur in the body. A few 
examples include inflammatory bowel disease (IBD) [58], rheuma-
toid arthritis [59], type 1 diabetes [60], multiple sclerosis [61], and 
systemic lupus erythematosus (SLE)as well as other neurological 
diseases such as Parkinson’s disease, Alzheimer’s disease and mul-
tiple sclerosis [62].
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The role of lipopolysaccharide in health and disease
In gram negative bacteria LPS is a structural component of the 

cell wall. Polysaccharides are covalently connected to lipids. A 
dense network of these chains forms a gelatinous layer that pro-
tects bacteria by forming a shield on their surface. LPS is produced 
by enzymes and it keeps the outer surface of bacteria moist and 
slightly negatively charged. Several diseases have been linked to 

bacterial LPS also known as endotoxin [63] and include liver dam-
age, neurodegeneration, chronic inflammation of the gut and dia-
betes [64]. Gut dysbiosis is associated with neuroinflammation a 
crucial aspect of AD pathophysiology. LPS and Gram-negative bac-
teria can transfer to the blood of older people because the intesti-
nal epithelium becomes more permeable [65].

Figure 3: Gut dysbiosis producing LPS, Bacterial amyloid, Trimethylamine N-oxide (TMAO) and Alzheimer’s Disease.

LPS in the pathophysiology of AD. The key contributing factors 
to the development of AD include amyloid plaques and intracel-
lular NFTs, neuroinflammation, mitochondrial dysfunction, OS, IR, 
and chronic cerebral hypoperfusion. These elements are either di-
rectly or indirectly related to one another. Cerebral hypoperfusion 
brought on by severe atherosclerosis or endothelial dysfunction, 
IR, and mitochondrial dysfunction causes an increase in ROS levels, 
which in turn causes APP to be overexpressed and processed more 
quickly, tau to be hyperphosphorylated, and NFT pathology to de-
velop, all of which contribute to neuronal death. A few of the vari-
ables that can cause inflammation include A, TBI, and infections. 
APP amyloid precursor protein, IR insulin resistance, NFT neurofi-
brillary tangle, OS oxidative stress, ROS reactive oxygen species, TBI 
traumatic brain injury are acronyms used in this article.

The impact of lipopolysaccharide on Alzheimer’s disease
Research suggests bacterial endotoxins may contribute to amy-

loidosis and Alzheimer’s disease by the deposition of amyloid beta 

plaques. The prolonged administration of bacterial LPS an outer 
cell wall component of Gram-negative bacteria mimics many of 
the degenerative and inflammatory characteristics of AD patients’ 
brains. Among the characteristics of AD and LPS containing E.coli 
is the ability of amyloid-peptide (Aβ) to aggregate into fibrils which 
serve as the primary component of amyloid plaques. Certainly the 
ability of amyloid-peptide (Aβ) to form fibrils among brain cells is 
one of the characteristics of AD and LPS containing E. coli bacteria 
can form extracellular amyloid [66,67]. The results of [68] experi-
ments suggest that celastrol can decrease NF-B, COX-2, and GSK-3 
expression, as well as oxidative stress, in order to minimize LPS-
induced cell death. Additionally these results suggest Gram-nega-
tive E. coli bacteria are capable of synthesizing extracellular amyloid. 
As a result of binding to the TLR4/CD14 complex on peripheral 
monocytes/macrophages or brain microglia LPS activates NF-B 
and boosts the production of cytokines including IL1, IL6, and TNF 
[69-71]. LPS-induced increases in β -AβPP and Aβ may be partially 
explained by overexpression of BACE-1/PS-1 and downregulation 
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of ADAM10 by LPS [72]. In addition, LPS entails adverse effects on 
the blood-brain barrier and interferes with LDL receptor related 
protein (LRP) which is necessary for the removal of Aβ from the 
brain [73]. High doses of LPS can damage the BBB enabling LPS to 
enter the brain more easily. The LPS can also be absorbed by mac-
rophages or monocytes. In addition to triggering cytokine release 
LPS binds to endothelial TLR4 [74]. Also, LPS stimulates tau hyper-
phosphorylation [76]. Figure 3 illustrates how LPS can contribute 
to amyloid plaques, myelin damage and hyperphosphorylated tau 
in AD. Due to the uncertainty regarding the origin of LPS and other 
bacterial compounds in the brain the debate regarding exogenous 
infections against internal or external sources must be resolved. 
The presence of LPS in AD brains suggests that additional infec-
tious agent molecules may also be relevant in subgroups where 
they may be mediated by other Toll-like receptors [77].

Amyloid plaques, myelin damage, and tau hyperphosphoryla-
tion are believed to occur in the AD brain because of LPS among 
other variables. Since LPS has been demonstrated in numerous 
laboratories to be present in human AD brains, LPS, TLR4/CD14 re-
ceptors, and Gram-negative bacteria may all be useful therapeutic 
and preventative targets for sporadic AD [78].

LPS and cholesterol linked to the risk of Alzheimer’s disease
The amyloid precursor protein (APP), which is processed 

proteolytically by β- and -γ secretases, yields Aβ. In contrast, 
α-secretase may also cleave APP within the Aβ domain, preventing 
the subsequent generation of Aβ. The three secretases, including 
APP, are membrane-integral proteins that move via secretory and 
endocytic trafficking routes. Therefore, the membrane lipid compo-
sition may be crucial to the movement and metabolism of proteins 
linked to Alzheimer’s disease [79]. Numerous studies demonstrate 
that the gut microbiota through its function in bile acid metabolism 
and the production of microbial products has the ability to change 
the blood lipid composition such as cholesterol [80,81]. A distur-
bance in cholesterol formation has numerous negative effects that 
controls many physiological processes including the generation of 
BA and the regulation of hormones [82]. Hypercholesterolemia has 
been associated with amyloid beta-peptide (Aβ) deposition and 
accelerates the AD-related pathology. In several studies the CNS 
had considerably higher quantities of formic acid-extractable Aβ 
peptides after diet-induced hypercholesterolemia and a direct cor-
relation between total Aβ levels and total cholesterol levels in the 
plasma and CNS was found [83-85]. The role of LPS on hypercho-
lesterolemia and amyloid beta aggregation is a possible culprit with 
relevance to AD pathology. LPS has been shown to induce NAFLD 
with disturbed sphingolipid, cholesterol and ceramide synthesis 
that may accelerate the pathogenesis of AD [86]. The hypercho-
lesterolemic diet has been shown to increase beta-amyloid burden 
by increasing both the quantity and size of the deposits. Probiotic 

diets that contain gram negative bacteria release LPS that induce 
excessive cholesterol levels and worsens AD-related pathology ac-
celerating Aβ buildup. In order to reduce the risk of AD it is thus 
suggested that a therapeutic probiotic diet should be implemented 
[87]. This therapeutic probiotic diet needs to activate the gut-liver-
brain axis to reverse hypercholesterolemia and amyloid beta ag-
gregation in AD individuals.

Potential Theurapeutics for Alzheimer’s disease
Alterations in the gut microbiota’s composition and diversity 

due to ageing, infections, unhealthful eating patterns and lifestyle 
choices may initiate the beginning and development of neurode-
generative diseases such as AD as changes in intestinal perme-
ability, BBB dysfunction, and neuroinflammatory processes are 
all tightly associated with dysbiosis [88,89]. In order to treat AD 
cognitive symptoms only a small number of medications such as 
AChEIs galantamine, tacrine, and donepezil have received FDA 
approval [90]. Traditional Persian Medicine (TPM) recommends 
several dietary changes to prevent and treat dementia. The micro-
biome’s composition is influenced by dietary choices and a meat- 
and dairy-based diet increased the abundance of Bacteriodes while 
decreasing the abundance of Firmicutes. Studies reveal that plant-
based diet high in grains, legumes, fruits and vegetables led to a 
rise in the number of Firmicutes that digest fibre including Eubac-
teria and Roseburia which raises the level of short-chain fatty acids 
[91].

No extensive research has been conducted on the possible im-
pact of nutrition on AD development. In some cases dietary habits 
can prevent the development of neurodegenerative diseases such 
as the Mediterranean diet and vitamin supplements but the effects 
of dietary changes on AD therapy remain unclear [92,93]. In ad-
dition to the considerable evidence linking high-carbohydrate di-
ets to AD altered glucose metabolism has also been suggested as 
a possible contributing factor. As a result of persistently high lev-
els of dietary sugars AD has been linked to insulin resistance [94]. 
There is no effective therapeutic agent for AD and novel therapeu-
tic approaches have attracted attention in recent years. Probiotics 
have recently been suggested as potential therapeutic options for 
AD due to the close relationship between gut microbiota and AD. 
Although most studies support the beneficial effects of probiotic 
supplementation on AD in many aspects such as cognitive deficit 
and related histological parameters [95].

Probiotics should be used more rationally to treat AD with more 
effort and intensive research required [96]. Although oxidative and 
inflammatory pathways have been implicated in the effects of pro-
biotics on AD there are likely to be other pathways which need to 
be clarified. Several studies have indicated alterations in gut mi-
crobiota are associated with AD-related behavioral and histologi-
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Bibliographycal symptoms [97]. Hence microbiota targeted interventions may 
represent a promising therapeutic strategy for AD [98,99]. Benefi-
cial bacteria known as probiotics modulate intestinal microbiota 
composition and function, facilitate digestion and nutrient absorp-
tion and may modulate the epithelial and immune responses of the 
host. As a result they are vital to maintaining immune homeostasis 
[100]. Studies with piglets showed that the lactic acid bacteria, En-
terococcus faecium (E. faecium) decreased levels of IL-1β, IL-6, IL-8 
and IL-12 in jejunal and ileal mucosa and upregulated IL-10 expres-
sion resulting in anti-inflammatory responses [101]. Furthermore, 
probiotics like E. faecium possess antioxidant properties since they 
reduce ROS levels in the hippocampus when supplemented in vivo 
[102-103]. To treat diabetic rats a mixture of probiotics (Lactoba-
cillus acidophilus, Bifidobacterium lactis and Lactobacillus fermen-
tum) was administered.

Conclusion
Therapeutics such as probiotics exert a beneficial effect on host 

gut microbiota after consumption and may be capable to prevent 
several diseases such as AD. Fermented dairy foods, cheese whey 
and buttermilk whey offer suitable matrices for the growth and vi-
ability of probiotic microorganisms and are potential sources for 
the development of probiotic dairy-based beverages. The literature 
shows that the heterogeneous food matrices of non-dairy food car-
riers are the major constraints for the survival of the probiotics 
and the use of antioxidants in yogurt manufacture. Dairy consump-
tion such as sour/fermented milk, yogurt, cheese, butter/cream, 
ice cream, and infant formula need to be assessed for the content 
of microbial diversity. The role of fermentation, freezing/thawing, 
room temperature modification and probiotic shelf life may have a 
critical effect on the generation of LPS from gram negative bacteria 
that may lead to dysbiosis. The association between high fat/high 
cholesterol diets have been shown to be linked to the increased in-
cidence for Alzheimer’s disease (AD). The literature shows strong 
evidence with relevance to changes in cholesterol metabolism and 
transport that is associated with AD pathogenic processes. The un-
derstanding of the role of gut microbiota and the metabolic regula-
tion of food lipids is now important to the induction of AD. Diets that 
contain low, medium and high fat have been shown to influence gut 
microbiota and functional foods and probiotics exert a beneficial 
effect on host gut microbiota and may be capable to prevent several 
diseases such as AD. Probiotics in food determine the composition 
of gut bacteria with dysbiosis that now are connected to the genera-
tion of LPS and toxic lipids from the liver such as sphingolipids and 
ceramides. The gut-brain-microbiota interactions may induce ab-
normal liver lipid metabolism and hypercholesterolemia that may 
accelerate AD with LPS and toxic lipids shown to be involved with 
accelerated brain amyloidosis with increased risk of AD. The use of 
beneficial probiotics in therapeutics may improve lipid metabolism 
and reverse hypercholesterolemia that is connected to amyloidosis 
and Alzheimer’s disease.
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