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Abbreviation
ACC: Anterior cingulate cortex; AD: Alzheimer’s disease; APP: Am-
yloid precursor protein; Arc DNA: Activity regulated cytoskeleton 
DNA; ApoE4: Apolipoprotein epsilon 4;   BACE1: Beta-secretase 
1; Bcl-2: B-cell lymphoma 2; BCC1: Basal cell carcinoma suscep-
tibility to 1; BDNF: Brain derived neurotropic factor CA1: Cornu 
Ammonis 1(Hippocampal subfield); CA2: Cornu Ammonis 2(Hip-
pocampal subfield); CA3: Cornu Ammonis 3(Hippocampal sub-
field); cAMP: Cyclic adenosine monophosphate; CaN: Calcineurin; 
CBP: CREB binding protein; CG: Cytosine guanine nucleotide, CH: 
Non(CG) nucleotide; COMT: Catechol-O-methyltransferase; CR: 
Calorie restriction; CREB: cAMP response element-binding pro-
tein; DG: Dentate gyrus; DNA: Deoxyribonucleic acid; DNAm: DNA 
methylation; Dnmt: DNA methyltransferase; Dnmt1: DNA methyl-
transferase 1; Dnmt3a: DNA methyl transferase 3 alpha; Dnmt3b: 
DNA methyltransferase 3 beta; DS: Down syndrome; DSCAML1: 
Down syndrome cell adhesion molecule like 1; Fbln2: Fibulin 2; 
Gabra5: Gamma-aminobutyric acid type A receptor alpha 5 sub-
unit; 5-hmC: 5-hydroxymethylcytosine; H3K4me3: Trimethylation 
to the lysine 4 on the histone H3 protein; H4K12: Lysine 12 on 
histone H4; H3K14: Lysine 14 on histone H3; HAT: Histone acetyl-
transferase; HD: Huntington's disease; HDAC: Histone deacetylase; 
HDAC2: Histone deacetylase 2; H3S10: H3 serine 10; Hspa5: Heat 

In recent past, epigenetic regulaions on mammalian aging has set a footprint in geriatric research at the molecular and cellular 
level. Epigenetic changes are phenotypic changes that are heritable through generations without any alteration of genetic sequences. 
Epigenetic involvement in memory formations and memory consolidation have been established in recent past. Also, it has been 
found that stress (due to aging or diseased condition)-induced oxidative damage can cause epigenetic modulation which aggravates 
memory impairment by initiating changes at the levels of genetic and biochemical profile(s). Epigenetic modulation at the levels of 
DNA methylation, histone acetylation and micro RNAs modifications have been found to be linked with cognitive impairment during 
normal as well as diseased aging. Calorie restriction in diet can attenuate aging-induced memory impairment by directly working 
on the epigenetic biomarkers related to DNA methylation, Histone acetylation and microRNAs level. However, effect of CR diet over 
disease-induced memory impairment is not well investigated and needs further research. In this review article, we have summarized 
various epigenetic biomarkers related to cognitive performance during aging and effect of CR diet as an epigenetic modulator/reju-
venator over aging-induced cognitive decline. 

shock protein family A (Hsp70); KIAA1644: Protein shisa-like-1; 
5-mC: 5-Methylcytosine; MF: Mossy fiber; miR-181a-1: microRNA 
181a-1; miR-192-5 p: microRNA 192-5 p; miR-30e: MicroRNA-30e; 
miR-34a: MicroRNA-34a; miR-98-3p: MicroRNA-98-3p; mRNA: 
Messenger RNA; mthtt: Mutant huntingtin; NP: Neuropsin; Npas4: 
Neuronal PAS domain protein 4; p300: p300 HAT; PD: Parkinson’s 
disease; PlK2: Polo like kinase 2; PP1: Protein phosphatase I; PS1: 
Presenilin 1; PS2: Presenilin 2; RNA: Ribonucleic acid; RND1: Rho 
family GTPase 1;  RNS: Reactive nitrogen species; ROS: Reactive 
oxygen species; SAM: S-adenosyl-L-methionine; Syn: Synapsin; 
TET1: Tet methylcytosine dioxygenase 1; TET3: Tet methylcytosine 
dioxygenase 3; TGF-β1: Transforming growth factor beta 1; TSC2: 
Tuberous sclerosis complex 2.

Introduction
Aging is a progressive decline of biochemical and physiological 

functions which ultimately results in to death [1]. Several scientists 
have postulated that aging is a progressive accumulation of damage 
which is genetically programmed or a result of decline in mainte-
nance [2,3]. Aging at cellular and molecular level is also considered 
as an individual or combinatorial effect of any of these following 
nine hallmarks such as epigenetic alterations, mitochondrial dys-
function, cellular senescence, telomere attritions, deregulated nu-
trient sensing, genomic instability, loss of proteolysis, stem cell ex-
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haustion, and altered intercellular communication as described by 
Lopez-Otin., et al. [4]. Mammalian aging is inevitably accompanied 
by structural and neurophysiological changes in the brain which 
likely to lead towards different neuronal disorders, cognitive de-
cline and other behavioral changes etc. [5,6]. One of the major and 
fundamental risk factor for acceleration of aging and its related 
neuronal disorders is stress [7,8]. Stress-induced excess accumula-
tion of reactive oxygen and nitrogen species (ROS and RNS respec-
tively) play a role in degeneration of neuronal lipid, protein, and 
nucleic acids leading to neurodegenerative disorders and/or brain 
aging [9]. In this context it is important to mention that venera-
bility of neurons towards oxidative damage has been found to be 
selective and region specific, probably causing selective functional 
decline of the brain during normal aging or different neuronal dis-
orders [9]. It has been found that entorhinal cortex, hippocampus 
CA1 region, frontal cortex, and amygdala associated with memory 
and Alzheimer’s disease (AD) like neuronal disorders during ag-
ing are maximum susceptible to oxidative damage [10-12]. May be 
why memory impairment is well observed in aging and its associ-
ated disorders. Genetic variations such as (a) decrease in level of 
cAMP response element binding (CREB) protein which is respon-
sible for long lasting changes in synaptic plasticity and synaptic 
efficacy related to memory and learning [13] (b) genetic mutation 
of amyloid precursor protein (APP), presenilin 1 (PS 1) and prese-
nilin 2 (PS 2) [14,15] (c) ablation of neurosis (NP) gene which is 
predominant in hippocampal CA sub regions, amygdala and also 
in prefrontal cortex [16-18] have been found to be responsible for 
aging-induced memory impairment and AD. The genetic changes 
are often controlled by the “master switches” i.e. epigenomic mod-
ulations [19]. In last few years epigenetic regulations have been 
found to play a crucial role in control of neurotransmitter expres-
sions, neuroinflammation and neurodegeneration [20,21]. “Epi-
genetic” is comparatively a new and wider approach than genetics 
as described by Waddington C.H., as “epigenetics” usually covers 
phenotypic changes which are heritable through generations with-
out any alteration of genetic sequences [22]. It has been also found 
that stress-induced epigenetic changes associated with neuronal 
mechanisms has the ability to become trans-generational but ther-
apeutic modulation to protect epigenetic pathways from environ-
mental stimuli is also possible [23,24]. These changes are mainly 
involved the Chromatin, DNA and RNA modifications which play 
a crucial role in translations and transcription of signals during 
normal aging as well as diseased aging [25]. For example, among 
several epigenetic variations in the brain, bidirectional change in 
DNA methylation (DNAm) is one of the prominent phenomena 
which has been observed during normal aging process globally 
[26,27]. Further, this DNA-methylation at cortical region of the 
brain has been found to play a pivotal role in long-term memory 
maintenance [28]. Substantial loss of memory is an early sign of 
neurodegenerative disorders like AD in elderly individuals [29]. 
Scarpa., et al. [30] and Fuso., et al. [31] have shown that ameliora-
tion of impaired memory can be achieved by increasing methyl do-
nor, S-adenosyl-L-methionine (SAM) which can reduce the expres-
sion of AD risk gene, APP and PS1, also reduces the aging-related  

memory impairment. This correlation between genetic and epi-
genetic variation related to aging associated memory impairment 
which in advance stage leads to AD like neuronal disorders. Altera-
tion at the epigenetic level could possibly control the genetic ex-
pression responsible for such diseased condition at an early stage. 
As per the report of Perugino., et al. [32] demented population will 
be 115 million by 2050 globally, demanding an effective therapeutic 
approach to fight against this global epidemic crisis. A major part 
of scientific community believes that the answer of this problem 
and its solution both are related to “lifestyle” including food habits 
[33]. It has been proved that simple life style changes like calorie 
restriction (CR) in diet has beneficial effect on memory impairment 
and other neurodegenerative disorders [34]. Recently, it has been 
found that CR diet mediated improvement in memory function 
could be a possible outcome of epigenetic modulation [35]. Here in 
this article, all the possible epigenetic reasons of memory impair-
ments during normal aging in comparison to disease-induced neu-
rodegenerative conditions are discussed with a special emphasis 
on dietary calorie restriction as an epigenetic modulator/revital-
izer for memory function. 

Epigenetic biomarkers responsible for memory formation

Gene expression mediated structural and functional changes of 
the neuronal networks are essential for memory formation as well 
as its functions [36,37]. Epigenetic modulators act as key controller 
of gene related pathways [38-40]. To study aging-related genetic 
alteration via epigenetic targeting can be of interesting approach 
towards recovery from aging-induced degenerations. The complex 
molecular mechanism of memory formation has partially identified 
so far until recently when Weng., et al. [41] identified that neuronal 
activity-dependent transcription factor (Npas4) is required as reg-
ulator of MF - CA3 connection (the connection between mossy fiber 
(MF) inputs from dentate gyrus granule cells and the hippocampal 
CA3 region) for controlling polo-like kinase (PlK2) expression. This 
synaptic regulation is important factor for formation of experience-
dependent contextual memory formation [42]. This hippocampus 
mediated task (Morris water maze, contextual fear conditioning, 
novel object recognition etc.) associated with memory formation 
has been found to be linked with euchromatin related post-trans-
lational modifications of histones which is increasing globally [43]. 
Levenson., et al. [44] and others [45,46] have observed that hip-
pocampus memory task increases the levels of (a) both acetylation 
at H3 lysine 14 (H3K14) and H4 lysine 12 (H4K12) [44], (b) phos-
phorylation at H3 serine 10 (H3S10) [45], and (c) trimethylation 
at H3 lysine 4 (H3K4me3) [46] in the hippocampus. In addition it 
may be mentioned that Miller and Sweatt (2007) first time have ob-
served an increase in DNA methylation associated enzyme level at 
memory-suppressor gene protein phosphatase I (PP1) along with 
a decrease of the same at plasticity-associated gene, reelin during 
learning and memory formation [47]. Later, Lubin., et al. [48] and 
Munoz., et al. [49] have reported that DNAm at BDNF, Arc, and calci-
neurin (CaN) genes is also associated with memory formation and 
its maintenance. These give evidences of epigenetic control over 
synaptic plasticity and memory related neuronal gene expressions 
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Aging causes deterioration in synaptic functions of the hippo-
campus and pre frontal cortex, the regions which are often cor-
related with cognitive impairment. Association of reduction in 
DNAm with aging is an well observed fact [52]. Recent observa-
tion in human model reveal that chronological alteration in gene 
expression can be correlated with alteration of DNAm with age as 
well as aging at the regulatory regions of these genes [53]. There 
are several evidences of links between DNAm and cognitive im-
pairment during aging in different mammalian groups such as in 
aged rats the decrease in methylation in (a) Arc DNA at hippocam-
pal CA1 and Dentate gyrus (DG) regions [54], (b) promoter regions 
of Gabra5, Hspa5, and Syn etc. [55] and (c) increases in the levels 
of 5-methylcytosine (5 - mC), 5-hydroxymethylcytosine (5 - hmC) 
has been observed [27]. In mice model, loss of DNA methyltrans-
ferases (Dnmt1, Dnmt3a, Dnmt3a2) in the adult brain cause cog-
nitive deficit [56]. In this context, it may be stated that memory 
impairment has been found in both mutant Tet1 animals [57] and 
in Dnmt1 mutated humans also [58]. Apart from DNAm, chromatin 
remodeling via histone acetylation by histone deacetylase (HDAC) 
inhibition has been also found to regulate synaptic and cognitive 
function during aging [59]. Aging associated Histone acetylation at 
lysine 12 on histone H4 (H4K12) in hippocampus has been found 
to decrease in learning-induced hippocampal gene transcription 
[60]. Similarly, the up-regulation of transcriptional marker H3K-
4me3 has been found to be linked with memory impairment in ag-
ing [61]. The above evidences [58-61] suggest that there is a par-
ticipation of histone acetylation along with DNAm in aging-induced 
cognitive impairments. Another probable epigenetic biomarker of 
aging-induced cognitive impairment is microRNA (miRNA) [62-
64]. Some miRNAs have been found to be correlated with cognitive 
impairment related to depression and aging. Such as, up-regula-
tion of miR192 - 5 p has been found to attenuate cognitive impair-
ment in depressed mice via fibulin 2 (Fbln2)-mediated transform-
ing growth factor beta 1 (TGF-β1) signaling pathway [62] whereas 

Aging, memory impairment and epigenetic modulation

[48,49]. Sharma., et al. [50] have shown that membrane depolar-
ization related to memory formation is down regulated by Dnmt1 
and Dnmt3a in the cortical region and hence further justify the role 
of DNAm in memory formation. 

Memory persistence is another important aspect of memory 
formation as well as its function which is a resultant effect of al-
tered synaptic strength of complex neuronal circuit although it 
needs further clarifications [51]. It has been speculated for a long 
time back that DNA might be the store house of memory [42]. The 
function of DNA methylation and participation of anterior cingu-
late cortex (ACC) in memory maintenance have been identified by 
Miller., et al. [28] on 2010. They have also observed that adminis-
tration of Dnmt inhibitor (5-azadeoxycytidine or zebularine) into 
the ACC after 29 days of memory training, DNA methylation is re-
duced on CaN gene with a memory impairment suggesting a role 
of DNA methylation and/or demethylation balance in ACC region 
mediated memory maintenance and storage [28]. 

down-regulation of miR - 34a, miR - 30e and miR - 181a -1 increase 
the B-cell lymphoma 2 (BCL2) mediated cell apoptosis followed by 
neuronal cell death [63]. Although the involvement of miRNAs in 
aging related cognitive impairment is not fully understood [Figure 
1(a)] and need further investigations. 

As per the study of Rani., et al. [64] Montreal Cognitive Assess-
ment (MoCA) has revealed that 13 miRNAs are negatively correlat-
ed with aging related cognitive decline although the same miRNAs 
are not linked with AD like neurodegenerative diseases. Memory 
impairment during neurodegenerative disorders (such as AD and 
Huntington’s disease (HD) etc.) is also an expected outcome of epi-
genetic deregulations. It has been observed that AD related neu-
rons contain significantly larger amount of cluster of hypomethyl-
ated enhancers in the  Down syndrome cell adhesion molecule like 
1 (DSCAML1) gene that targets Beta-secretase 1 (BACE1), which 
by up regulation increases amyloid plaques deposition, neurofi-
brillary tangles, and cognitive impairment [65]. It has been also 
observed that later stage of AD related increase in Histone deacet-
ylase 2 (HDAC2) level reduces histone acetylation which could be 
correlated with impairment of synaptic plasticity and learning and 
memory [66-68]. So it can be speculated that HDAC2 knockdown 
can work as a tool for neurodegeneration associated memory im-
pairment by increasing RNA polymerase and gene expression of 
memory and learning functions [68]. 

Role of epigenetic alteration on memory impairments 
during aging related neuronal disorders

Figure 1: Possible mechanism of epigenetic action of (a) aging/
diseased aging on declination of cognitive function (b) dietary calo-
rie restriction on aging-induced impairment of cognitive function.

APP: Amyloid precursor protein; cAMP: Cyclic adenosine mono-
phosphate; NP: Neuropsin; PS: Presenilin. Red Arrow(  ) indicates 
down-regulation and Green Arrow (  ) indicates up-regulation.
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In HD patients, the sequestration of CREB binding protein (CBP) 
by mutant huntingtin (mthtt) has been found to promote neuronal 
transcriptional dysfunction by blocking its (CBP) co-factor activity 
during histone acetylation [69]. It is known that CBP works as a 
transcriptional cofactor of histone acetyltransferase (HAT) during 
chromatin remodeling [70] and loss of CBP function is indirectly 
responsible for alteration in acetylation level of histones and chro-
matin structure in neuron [69, 71]. Korzus., et al. [72] have found 
that impairment of short term to long term memory conversion is 
related to the reduction in HAT activity. The disability in perform-
ing long term memory recognition tests by p300 mutant mice (CBP 
homologue) having lack of active HAT [73] suggests that there may 
be an epigenetic link between cognitive dysfunction during HD and 
reduced CBP-HAT activity [74]. 

 Down syndrome (DS) related cognitive impairment has been 
found to be linked with DNA methylation. In DS, comparing the ag-
ing-induced memory impairment and corresponding age-matched 
control group, Jones., et al. have shown that DNA methylation oc-
curs in 5 probes (BICC1, KIAA1644, RND1, TSC2 (two isoforms)) 
related to cognitive impairment with respect to their correspond-
ing control groups. Further, it may be also mention that among 
those 5 probes TSC2 gene is a component of mTOR pathway, linked 
with Alzheimer’s [75]. 

One of the predominant non-motor dysfunction related to Par-
kinson’s disease (PD) is cognitive impairment. Cognitive impair-
ment in PD is heterogeneous and varies from subtle to mild and 
up to dementia [76]. Cognitive deficits during PD typically affect 
attention, visuospatial function, and speed of processing [77]. The 
mechanism of cognitive deficit during PD is not fully understood 
although presence of dual hypothesis has been suggested one of 
which, is (a) a frontostriatal/executive function and its related 
dopamine depletion which interacts with the catechol-O-methyl-
transferase (COMT) genotype but its progress towards dementia 
is optional [78] and the other one is (b) involvement of AD pathol-
ogy, non-dopaminergic transmitters, and apolipoprotein epsilon 
4 (ApoE4) genotype due to dysfunction of posterior cortical fol-
lowed by impairment of language/semantic fluency, and visuo-
spatial orientation/pentagon copying [79]. However, the epigen-
etic involvement on cognitive impairment during PD has not been 
evaluated so far and need further investigations. These undefined 
signaling pathways have not been shown in the flow sheet [Figure 
1(a)] of the present article. Future studies with other variations of 
neurodegenerative diseases linked to aging processes related the 
changes in epigenetic factors will explore our knowledge in this 
specialized field of geriatric research. 

Dietary calorie restriction (CR) a reduced dietary energy in-
take (usually 20-40%), without compromising the micronutrient 
content, has been proved to be beneficial on aging-related health 
disorders [80]. An important property of CR is to generate a cel-
lular memory which stays even after the discontinuation of calorie 

Calorie Restriction as a revitalizer of memory at the epigenetic 
level during aging 

restricted diet [81-83]. Hahn., et al. [84] and others [25, 85] have 
investigated that changes in DNA methylation induced by CR per-
sist at least 20 - 50% for 2 months in rodents even after discon-
tinuation of CR after 1 month of its consecutive supplementation. 
Surprisingly, this phenomena has found to be effective in humans 
as these epigenetic down regulation in DNAm persist for six de-
cades after prenatal exposure to hunger during Dutch Hunger Win-
ter in 1944 –1945 [86]. This particular incident further justifies CR 
as a probable epigenetic modulator. In recent past, the epigenetic 
modulatory property of CR during aging has been investigated and 
opened up a new insight in this field at the cellular and molecular 
levels [87-89]. Heijmans., et al. [86] and other investigators [87,90] 
have reported that CR has the property to reverse DNA methylation 
patterns during aging along with that helps to maintain chromatin 
function and also increase genomic stability. Hadad., et al. [35] have 
observed that hippocampal DNA methylation pattern using CR fed 
“genome-wide bisulfite sequencing” in CR fed young (3 months) 
and aged (24 months) mice is altered at CG and CH sites irrespec-
tive of age. Their study also provides information that CR regulates 
aging-induced methylation by CR specific routes such as DNMT1 
and TET3 promoters for hypermethylation than those affected by 
aging only or shows neuroprotective effect by both the signaling 
pathways [35]. In this context, it may be mentioned that Meyerson., 
et al. [91] as well as others [92,93] have shown that HDACs activi-
ties also increase during CR supplementation and helps to promote 
longevity. Recently transcriptome analysis has further shown that 
CR diet consumption overexpresses neuroprotective gene in rat ce-
rebral cortex possibly by increasing miRNA (miR – 98 - 3p) which 
maintains the homeostasis of HDAC and histone acetyltransferase 
[89]. In mice brain Khanna., et al. [63] have shown that the counter 
acting effect of CR diet on aging induced increase in miR-181a-1, 
miR-30e, and miR - 34a leads to elevate Bcl- 2, which is involve in 
apoptosis of healthy neuronal cell and hence indirectly suggests a 
possible neuroprotection [94]. So, it is not unlikely to hypothesize 
that CR diet can protect memory impairment by maintaining HDAC 
and histone acetyltransferase homeostasis in the cerebral cortex, 
as cortical region has an active role in long-term memory con-
solidation. Recent past evidences of Chouliaras., [27,95] et al have 
shown that CR diet attenuates aging-induced impairment of cogni-
tive function [6] by increasing 5 - mC and Dnmt3A in hippocampal 
CA3 and CA1 - 2 regions respectively [Figure 1(b)]. As discussed 
earlier DNA methylation has a role to play in formation of memory, 
it can be stated that these two phenomena are correlative. Though 
the exact mechanism by which CR diet attenuates the hippocam-
pal 5 - mC and Dnmt3A in aged brain is not fully known it may be 
suggested that CR diet is definitely involved with (a) one carbon 
metabolic pathway and control the methyl-groups availability [96] 
(b) homeostasis between methylation and hydroxy methylation 
[84,95,96] (c) histone deacetylases (by sirtuins pathway) and in-
crease life span [97] and (d) chromatin remodeling [98] [Figure 
1(b)]. 

All the above mentioned observations clearly state that dietary 
CR has a positive effect on cognitive function by epigenetic up-reg-
ulation in normal aging; however there is a gap of information re-
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Conclusion

garding effect of calorie restriction on memory impairment during 
diseased aging. Though CR has been found to attenuate the effect 
of neurodegenerative disorders at the epigenetic level in AD, PD, 
HD etc. during aging [80,99,100,101] [Figure 1(a)] there is a lack of 
information in relation to epigenetic regulation by CR diet that can 
directly attenuate the cognitive impairment during diseased aging 
which needs a proper investigations with a scientific evaluation. 

Bridging between epigenetic and transcriptional changes is 
crucial for better understanding of neuronal aging process and also 
for achieving a better therapeutic regimen for healthy living [102]. 
The beauty of energy restriction in diets is the effectiveness of CR 
over board spectrum physiological abnormalities during aging in-
cluding cognitive function [102]. Dietary CR is non-invasive, cost-
effective and easily accessible and can be accepted by global popu-
lation. Involvement of calorie restriction on alteration of epigenetic 
factor(s) not only validates the acceptability of such regimen as an 
anti-aging therapy, but also opens-up newer challenge(s) towards 
more advance and precise application of CR diet to achieve its max-
imum effect. Needless to mention that there is still some space to 
be evaluated and established on CR diet’s affectivity in epigenetic 
signaling pathways related to cognitive impairment during aging 
and especially in diseased aging. Effectiveness of CR on disease-
related epigenetic alteration in memory impairment during aging 
is lacking in the frontiers of nutritional neuroscience and need 
further investigations. Moreover, the optimization of calorie intake 
with respect to dose and duration for converting it (CR diet) in a 
therapeutic regimen is also essential which in fact in future this ap-
proach will help to transfer from bench to bedside with maximum 
beneficial effect as rejuvenator for memory preservation as well as 
its function during aging. 
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