

Harnessing Neuroplasticity: Mechanisms of Brain Resilience and Functional Recovery

Parvin Mozafari*

Faculty of Medicine, University of Georgia, Tbilisi, Georgia

*Corresponding Author: Parvin Mozafari, Faculty of Medicine, University of Georgia, Tbilisi, Georgia.

Received: December 26, 2025

Published: December 31, 2025

© All rights are reserved by **Parvin Mozafari**.

Abstract

The concept of neuroplasticity, which is the brain ability to restructure, reconnect and re-function in response to experience, injury, or environmental conditions, is important to maintain cognitive and motor functions throughout the lifespan. There is growing evidence to suggest that neurocircuit impairments may result in learning, memory, sensory processing and adaptive behavior deficits, as they do in neurological and neurodevelopmental conditions. The mechanisms that underlie neuroplasticity are therefore critical in defining ways of delivering strategies geared to achieving functional recovery and resilience of the brain. This abstract review the recent experimental, translational studies clarifying the mechanisms of cellular, molecular, and circuit-based neuroplasticity. Significant findings in human and rodent studies highlight the influence of adaptive responses by modulatory neurotransmitter systems, thalamocortical connections, cortico-cortical connections, inhibitory-excitatory interactions and synaptic plasticity. Targeted circuit modulation can be used to improve behavioral post-injury and disease models, and this has been demonstrated using optogenetic and electrophysiological technology. Also, it has been shown that behavioral studies can employ endogenous plasticity to assist in restoring functions by enhancing sensory input, cognitive training, and rehabilitation. More importantly, recent studies based on mouse models of neurodevelopmental disorders, such as autism spectrum disorder have shown that too much or aberrant activity in the brain circuit leads to adaptive behavioral and cognitive performance difficulties. The restoration of network balance through pharmacologic and genetic and neuromodulator methods shows that neuroplasticity functions as a tool for deficit recovery which leads to better social and cognitive and sensory results. Research using stroke and traumatic brain injury and neurodegenerative disease models shows that brain plasticity which depends on activity enables the brain to reorganize itself for compensation which provides valuable information for developing new medical treatments. Research findings reveal multiple brain resilience mechanisms which show neuroplasticity functions at molecular and synaptic and network levels. This review combines evidence based on both animal and human research in explaining how increased neuroplasticity knowledge can inform clinical practice, improve recovery and rehabilitation efforts and how novel interventions to cognitive, motor, and behavioral disorders can be developed. To conclude, the concept of neuroplasticity and knowledge enables scientists to understand brain adaptation through its plasticity which leads to development of treatment methods for functional recovery. The research findings create essential knowledge which scientists can apply to build medical treatments for neurorehabilitation and precision medicine and translational neuroscience that will generate enhanced patient outcomes and improved brain resilience in healthy and diseased states.

Keywords: Neuroplasticity; Brain Resilience; Functional Recovery; Neural Circuits; Rehabilitation; Synaptic Remodeling

Abbreviations

AMPA: α -Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; ASD: Autism Spectrum Disorder; BDNF: Brain-Derived Neurotrophic Factor; E/I: Excitatory-Inhibitory; LTD: Long-Term Depression; LTP: Long-Term Potentiation; NMDA: N-Methyl-D-aspartate; PNS: Peripheral Nerve Stimulation; TBI: Traumatic Brain Injury; tDCS: Transcranial Direct Current Stimulation; TMS: Transcranial Magnetic Stimulation; VNS: Vagus Nerve Stimulation

Introduction

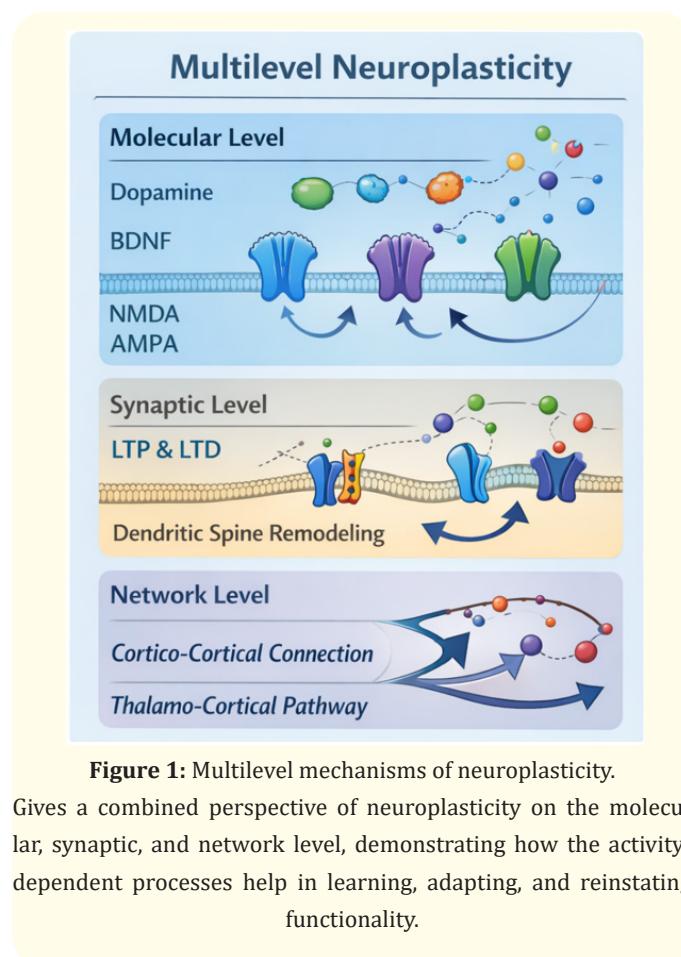
The human brain demonstrates remarkable adaptability because it can change its structural organization and functional operations and network connections when exposed to various internal and external conditions. The human brain shows the ability to adapt through neuroplasticity which enables learning and memory formation and sensory processing and motor coordination and behavioral adaptation throughout all stages of life. The nervous system maintains its ability to adjust through neuroplasticity which enables it to respond to new experiences and environmental needs and physical damage and medical conditions thus supporting normal function and enhanced recovery in both healthy and diseased states [1]. The brain used to be considered a fixed organ in adults but scientists believed it only showed plasticity during its early development stages. This concept of the brain was prominent in the neuroscience field until groundbreaking studies identified experience-dependent synaptic change and cortical remodeling of the mature brain. Scientists discovered Long-Term Potentiation (LTP) as a cellular mechanism for memory storage which proved synapses possess the ability to change based on neuronal activity [2]. Research studies that followed proved neuroplasticity exists as a multilevel process which includes molecular signaling and synaptic remodeling and large-scale network reorganization (Figure 1).

The molecular mechanism of neuroplasticity arises out of complex signaling processes that go beyond the utilization of neurotransmitters and receptors, coupled with activity-dependent gene expressions. The brain-derived neurotrophic factor (BDNF) together with other neurotrophic factors serves as the main factor which supports synaptic stability and dendritic development and neuron maintenance. Modulatory neurotransmitter systems

within the brain plasticity also include dopaminergic, serotonergic, cholinergic, and noradrenergic systems between the behavioral context and motivation [3]. These molecular mechanisms are the basic layer of neuroplastic adaptation, as depicted in Figure 1.

Neural plasticity at the synaptic level emerges through two main processes which include long-term potentiation (LTP) and long-term depression (LTD). Structural changes in the brain occur through dendritic spine remodeling and synapse formation and elimination which create physical bases for lasting functional changes. Neural circuits develop their capacity to store experiential data through these processes which enable them to modify their structure based on environmental needs by strengthening useful connections and eliminating weak or unhelpful pathways [4]. The synaptic level of Figure 1 indicates the importance of activity-regulated remodeling which connects molecular signaling with adaptation on the circuit.

In addition to single synapses, neuroplasticity is also observed in the form of neural circuits and distributed brain networks. Neural pathways between the thalamus and cortex and between different cortical areas continue to develop based on learning experiences which allows the brain to process sensory information and plan movements and execute cognitive functions. Functional neuroimaging research shows that brain network reorganization at the large-scale level occurs during learning and recovery processes instead of changes happening in specific brain regions [5]. Figure 1 illustrates network-level reorganization, which allows brain areas that have been spared the challenge of compensating the damaged or dysfunctional ones.


Neuroplasticity proves its clinical value through its effects on patients who suffer from neurological injuries and diseases. The brain experiences damage when stroke and traumatic brain injury (TBI) and neurodegenerative diseases affect its normal neural pathways which result in motor and sensory and cognitive function problems. The brain shows its ability to heal from these disorders through its natural process of activity-based plasticity and self-organizing capabilities. Animal research studies with experimental methods and human brain imaging investigations show that functional improvement happens when the brain reorganizes its cortex [6].

Neuroplasticity plays a role in neurodevelopmental disorders, where the formation of circuits and the regulation of the synapses is abnormal, causing long-term functional consequences. An example is the autism spectrum disorder (ASD), which has been linked to the imbalances in excitatory and inhibitory processes, and the maladaptive synaptic pruning. Instead of indicating a lack of plasticity, most of these states are associated with either excessive or dysregulated plasticity, which results in the circuit hyperexcitability and poor information processing [7]. These findings underscore the fact that neuroplasticity must be tightly controlled to facilitate adaptive phenotypes. Research shows that neuroplasticity exists in two forms which scientists call adaptive plasticity and maladaptive plasticity because the first supports learning and recovery but the second leads to ongoing dysfunction. The brain undergoes maladaptive plasticity which causes chronic pain and epilepsy and dystonia and certain psychiatric disorders because abnormal circuit reorganization leads to the development of harmful behaviors and sensory experiences [8]. It is a necessity to know how plasticity changes adaptive/maladaptive to create an effective therapeutic intervention.

This level of neuroplasticity study and manipulation has been greatly enhanced by technological advances. Optogenetics and chemo-genetics paired with electrophysiology and *in vivo* imaging techniques have helped scientists to develop direct causal associations between distinct patterns of neural circuit activity and behavioral outcomes. The experimental disease models show that specific neural circuit modulation leads to function restoration which holds potential for clinical translation according to these research methods [9]. Non-invasive brain stimulation methods have made equivalent progress which verifies plasticity-based treatments for medical use.

The body contains natural neuroplasticity which behavioral and rehabilitative interventions use to their full advantage. The combination of motor training with sensory enrichment and cognitive rehabilitation and environmental changes leads to improved synaptic connections and brain circuit transformations in both laboratory models and human clinical patients [10]. It is through interaction with plasticity, which is driven by activity that these interventions strengthen adaptive circuits and inhibit maladaptive circuits leading to improved functional recovery. Concurrently

with the research in neuroplasticity, the idea of brain resilience has taken over [11]. Brain resilience can be defined as the ability of neural systems to either retain or recover during an occurrence of an injury, stress or disease. Neuroplasticity forms a core element in the force of resilience wherein the brain is able to alter its structure and functionality in reaction to adverse environments. Explaining the processes that underlie resiliency would be useful in designing individualized interventions that can make the most out of recovery potentials [11]. The research aims to unite existing scientific data about molecular and synaptic and circuit-based neuroplasticity mechanisms which enable brain protection and functional restoration as shown in Figure 1. Scientists working with animals and human subjects have combined their research results to build a practical model that shows how brain plasticity can be used to treat neurological conditions and developmental brain disorders.

Methodology

- **Study Design:** The content of this research exists as a narrative review which brings together experimental and translational and clinical studies about neuroplasticity mechanisms and their effects on brain recovery and resilience.
- **Literature Selection:** The evaluation process for peer-reviewed studies required assessment of their relevance to the following topics:
 - The research focuses on studying the biological processes which govern plasticity at the cellular and molecular levels.
 - This paper examines the mechanism of synaptic modeling where neurons alter their network connections and neurotransmitter networks.
 - The research examines the structural changes of neural circuits through their reorganization at the circuit level.
 - The research focuses on studying biological plasticity through its beneficial adaptation and detrimental maladaptive processes.
- **Data Synthesis:** Data was combined as qualitative results and focused on Regulatory pathways and Therapeutic relevance. The study did not use any meta-analytic studies for its analysis.

Results

Molecular and cellular determinants of neuroplasticity

Results from experimental studies showed that neuroplasticity is initiated by coordinated molecular and cellular mechanisms [1]. Synaptic modification occurs through activity-dependent neurotransmitter release which involves glutamate signaling that activates NMDA and AMPA receptors to allow calcium entry and trigger intracellular pathways for receptor movement and gene expression control [2,4,11]. The molecular events represent the first stage of plastic change which forms the basic structure of neuroplasticity as shown in the molecular level of Figure 1.

The role of neurotrophic factors (particularly of brain-derived neurotrophic factors) is central in the process of maintaining synaptic plasticity and neuronal survival. Research shows that BDNF signaling at elevated levels results in better dendritic complexity

and synapse formation and improved learning and memory abilities [3]. The brain needs BDNF function to heal itself after injury because BDNF function deficiencies block the recovery process. The molecular processes work together to create the biochemical conditions which support adaptive plasticity.

Synaptic plasticity and structural remodeling

Neuroplasticity happens at the synaptic level in two basic mechanisms referred to as long-term potentiation (LTP) and long-term depression (LTD) that manage the strength of the synapses in accordance with designated patterns of neuronal firing [2,4]. Research studies on electrophysiological evidence show that learning and memory abilities link directly to how synaptic strength changes through experience. The research on structural imaging shows that dendritic spines undergo continuous changes through size growth and new spine creation and removal which demonstrates ongoing synaptic plasticity throughout extended periods [11].

The synaptic modifications provide a critical step that links the molecular signaling to large scale circuit reorganizations. The diagram in Figure 1 shows the connection between molecular and synaptic processes which determine functional adaptation yet Figure 2 presents a theoretical comparison of how disrupted synaptic remodeling leads to maladaptive plasticity.

Circuit-level reorganization and network plasticity

Neuroplasticity at the circuit level demands extensive brain connection changes which affect the operation of multiple brain networks [1]. The brain undergoes structural changes in its neural networks after focal injuries like strokes or traumatic brain injuries which help restore some level of functional ability. Research on animals shows that their brain maps change when they get different sensory or motor signals, but human brain scans display how brain networks shift their connections during healing [6]. For mediating adaptive network reorganization, thalamocortical and cortico-cortical pathways are particularly important. The brain achieves successful recovery when it restores its normal network connections and information transfer paths between its different regions. Figure 2 shows how network-level plasticity functions when it performs adaptively and maladaptively while maintaining the excitatory-inhibitory balance for functional results [5].

Balance between adaptive and maladaptive plasticity

Research on neurodevelopmental disorder models shows that when control systems break down plasticity in the brain develops into harmful forms [7]. Autism spectrum disorder results in two opposing brain circuit activities which create excessive excitation and diminished inhibitory control which causes hyperactive networks that disrupt both sensory and social processing. The research shows that better results require more than plasticity because exact circuit activity control becomes necessary for functional improvement [7].

Research has demonstrated that network dysfunctions become normalized when scientists use pharmacological or genetic or neuromodulatory methods to restore excitatory-inhibitory balance which leads to better behavioral test results [8]. The visual representation in Figure 2 shows how adaptive recovery-promoting plasticity differs from maladaptive circuit dysregulation in terms of their respective patterns [9].

Figure 2: Adaptive and maladaptive neuroplasticity at the circuit level.

Homeostatic excitatory-inhibitory connections facilitate normal activity and information processing, and plasticity dysregulation results in circuit breakage and behavioral disability.

Activity-dependent plasticity in rehabilitation and functional recovery

To achieve the mentioned neurorehabilitation and behavioral processes, the inherent neuroplastic mechanisms are constantly utilized to guarantee recovery after neurological damage [10]. In the context of the animal model, training, stimulation, and the repetition of actions are known to strengthen the synaptic connections and result in cortical plasticity. These results have been

supported by clinical trials conducted on patients with stroke and traumatic brain injury, and they have shown that rehabilitation results in changes in brain connectivity and recovery of physical and cognitive functions Table 1 [6]. These concepts of rehabilitation-induced plasticity and functional circuit compensation represents how damaged brain circuits can be restored by functional compensation.

Model Type	Key Intervention	Observed Outcomes
ASD Mouse Models	Pharmacologic/Genetic Neuromodulation	Improved social/cognitive behaviors Neuroplasticity.
Stroke/TBI Rodent Models	Optogenetics/Electrophysiology	Enhanced motor recovery via circuit modulation
Neurodegenerative Human Studies	Cognitive Training/Rehabilitation	Restored sensory processing and memory.

Table 1: Experimental models and interventions demonstrating neuroplasticity-driven functional recovery.

In both animal and human research, neuromodulation, circuit-level stimulation and rehabilitation-based neuromodulation encourage adaptive neuroplastic adaptations, leading to better behavioral, motor and cognitive outcomes.

Discussion

Fundamental mechanisms underlying neuroplasticity

Neuroplasticity is a natural process of the brain to reorganize its physical and functional form as a result of life experiences and environmental changes and physical injury. The synaptic level depends on activity-dependent mechanisms including long-term potentiation (LTP) and long-term depression (LTD) which control synaptic strength to enable learning and memory formation and functional adaptation [4,12]. The biological processes occur through glutamatergic signaling together with calcium influx and the subsequent activation of NMDA receptors and brain-derived neurotrophic factor (BDNF) and intracellular kinases [13].

Structural plasticity is a significant driver of brain recovery because it works by remodeling the dendrite and axons and forming new neural connections. The surviving neurons develop new connections which help them fill the gaps left by damaged neural pathways [14]. The brain achieves functional redistribution through cortical reorganization at the network level when it experiences localized brain damage. The adult brain produces new neurons in specific areas including the hippocampus and subventricular zones which help maintain cognitive abilities and emotional stability although scientists remain uncertain about their exact role in human brain function [15,16].

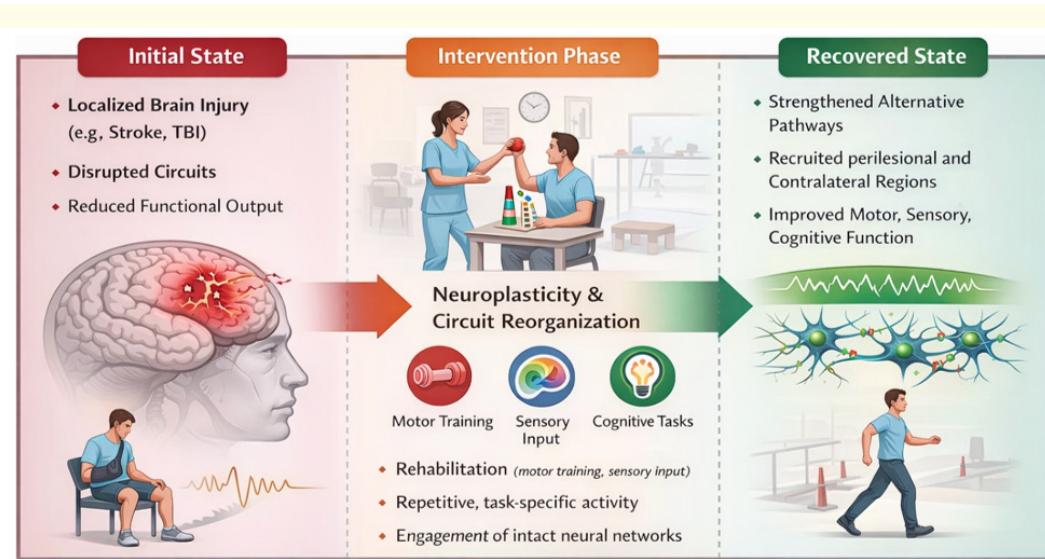
Brain resilience and the balance between adaptive and maladaptive plasticity

Neuroplastic mechanisms involve brain-resilience to maintain functional stability in pathological interference. The process of adaptive plasticity helps the brain recover by using available neu-

ral resources at their highest performance levels, but maladaptive plasticity reinforces harmful and inefficient patterns of brain activity [17]. Maladaptive plasticity appears through three main examples: chronic pain syndromes which cause abnormal sensory remapping and stroke patients who develop excessive contralesional brain activity and dystonia patients who maintain their motor patterns [18,19].

Neural plasticity exists in two forms which researchers classify as adaptive and maladaptive plasticity because these forms show different responses to various environmental conditions and time periods and neural activity levels. The brain benefits most from early specific task activation because this process leads to positive reorganization although unplanned or excessive compensatory methods interfere with optimal recovery [20]. This information regarding this equilibrium is crucial to the creation of therapeutic approaches that guide plasticity to productive outcomes rather than a change in brain form [20].

Modulating factors influencing neuroplastic capacity


Neuroplasticity besides being an inherent brain property is also considerably influenced by the individual alongside environmental factors. The most pronounced factor is age, with the different stages in one's life being defined by varying degrees of plasticity; nonetheless, the adult brain is also capable of a significant degree of plasticity but, in this case, only when adequately challenged [21]. Genetic as well as epigenetic factors, such as the presence of different BDNF and dopamine signaling related polymorphisms, account for variations in the plasticity and recovery pathways [10]. It is well established that environmental enrichment, cognitive

engagement, and physical activity can enhance neuroplasticity to a great extent through the mechanisms of increasing the expression of neurotrophic factors and the density of synapses [22]. On the other hand, chronic stress, sleep deprivation, and inflammation throughout the body adversely impact plastic mechanisms by causing the dysfunction of the hypothalamic-pituitary-adrenal axis and neuroimmune pathways [23,24]. Thus, the conduct of lifestyle changes and psychosocial factors together with neurological rehabilitation has been emphasized by the findings.

Neuroplasticity and functional recovery following brain injury

After a neurological injury, for example, a stroke or traumatic brain injury (TBI), one of the mechanisms of the brain's plasticity that is responsible for the recovery by itself and the recovery

through rehabilitation is neuroplasticity. The early phase of recovery is usually related to the disappearance of diaschisis and partial restoration of function in the area around the lesion, while cortical reorganizations and changes at the network level take place during the later stages [6]. The findings from functional neuroimaging studies indicate that successful recovery is often the case when affected side networks get re-engaged instead of when there is continuous dependence on the homologous region in the other hemisphere [25]. The idea of critical or sensitive windows for recovery has been more and more acknowledged which implies that during these periods the brain is more open to the rehabilitation input. Rehabilitations that take place in those windows might give rise to stronger and longer-lasting functional gains, thus highlighting the need of early but properly calibrated therapy, Figure 3 [25].

Figure 3: Rehabilitation-induced neuroplasticity following neurological injury.

Specific behavioral therapies favor circuit rearrangement and compensatory network recruitment, which result in functional recovery.

Therapeutic approaches harnessing neuroplasticity

The contemporary neurorehabilitation has the tendency of using neuroplasticity as its primary technique. One of the fundamental approaches to rehabilitation is task-specific training and repetitive practice, yielding the effect of use-dependent plasticity and improving the efficiency of the network [25]. Non-invasive brain stimulation methods such as TMS (transcranial magnetic

stimulation) and tDCS (transcranial direct current stimulation) have pointed out their usefulness in imposing changes in the cortex's excitability and more so in the training of the brain's plasticity, especially when paired with behavioral therapies [25,26]. Dopaminergic agents or selective serotonin reuptake inhibitors are some of the pharmacological strategies targeting neurotransmitter sys-

tems and neurotrophic pathways that have been tried as adjuncts to rehabilitation but still give heterogeneous results [26]. Stress-related inhibitory effects can be reduced, and the engagement of adaptive networks can be promoted by the use of cognitive and behavioral interventions, such as mindfulness and cognitive training, which would then further support plasticity [26].

Limitations and challenges in translating neuroplasticity research

There are several challenges, though significant advancements have been made, that still limit the transfer of neuroplasticity research from the lab to the clinics. The large differences in patients with respect to factors like their neural reserve, the characteristics of the lesions, and the presence of other diseases make it hard to predict treatment response [27]. Moreover, a large part of the mechanistic evidence for plasticity comes from studies on animals, and those studies may not be able to capture the full complexity that is present in human brain networks and behavior [25]. The differences in methods among the studies, which include issues such as the use of different outcome measures, different intervention programs, and different follow-up periods, also restrict the possibility of making comparisons. Ethical and safety concerns, especially those related to the use of repeated neuromodulation or drug-assisted plasticity enhancement, should also be considered very carefully [27].

Future directions and clinical implications

The future research works will focus on the detection of trustworthy biomarkers corresponding to the neuroplastic potential for personalized rehab strategies. Neuroimaging, electrophysiological and molecular markers all together in a single patient study may provide recovery capacity and best intervention timing-based patient classification [28]. The next generation neuroplasticity-based treatments are likely to be the combination of therapies that involve behavioral training, neuromodulation and pharmacological support together. In the end, a neurorehabilitation precision medicine approach may turn neuroplasticity into a targeted therapy tool rather than a descriptive concept, and thus greatly enhance the long-term functional outcomes and quality of life of patients with neurological disorders [29].

Conclusion

Neuroplasticity is one of the primary reasons the brain is so resilient when confronted by traumatic injury or disease, and why it is because brains are physically capable of adversity that we adapt to experience, trauma and pathology via changes. Cellular and molecular neuroplasticity represents alterations occurring in neurotransmitter systems, receptor redistribution, intracellular signaling cascades, or gene expression that all together determine the synaptic strength and connectivity. The reorganization of functions at the network and systems levels makes it possible for the remaining circuits to take up the functions of the lost ones and, consequently, support the recovery of motor, cognitive, and sensory abilities [34]. This has been rather explicitly illustrated in stroke and traumatic brain injury patients where treatment with techniques designed to stimulate use-dependent plasticity such as task-specific practice and intensive motor training are associated with observable improvement in functional outcomes. Combining non-invasive neuromodulation techniques such as transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS), with physical and cognitive therapies has been proven to be a good way of increasing the neuroplastic responses and speeding up the recovery process among people with various neurological disorders [34].

Technological breakthroughs are still going on, and they are still perfecting our capability to control neural plasticity more and more exactly. With optogenetics and genetic neuromodulation tools, there is the possibility of controlling specific types of cells within the neuronal populations, which makes it possible to do a causal mapping of circuit function and design targeted interventions. On the other hand, non-genetic neuromodulation techniques like tDCS, TMS, and photo biomodulation allow for the non-invasive manipulation of neural excitability and the gradual wiring of the human brain patients to be done. The above-mentioned development has not only speeded up the translational research but also provided clinicians with a wider range of therapeutic tools [31,32].

There is an increasing emphasis in emerging clinical and translational studies on the value of multimodal treatment approaches

in which rehabilitation training, neuromodulation techniques, as well as the use of adjunctive modalities such as robotics and virtual reality and brain and computer interfaces, can be merged to introduce synergistic effects [34]. This is because these modalities modulate more than one mechanism associated with plasticity and can cause simultaneous activation in more than one aspect associated with activation and plasticity.

An equally huge importance is being attached to the new precision neurorehabilitation paradigm, which aspires to personalize treatment according to each patient's neural profile and specific plastic potential [34]. The progress being made in neuroimaging, electrophysiology, and computational modeling techniques is allowing for the *in vivo* monitoring of plasticity changes to be one of the factors enabling the dynamic adjustment of the therapies thus maximizing the benefit. This customized way seeks to consider the factors that cause differences in plastic responses such as age, genetic background, lesion features, and comorbidities, through which the eventual goal of facilitating clinical outcomes and avoiding maladaptive rewiring is attained [32,34].

At last, a thorough understanding of neuroplasticity mechanisms from molecular signaling to reorganization of major networks will establish the basis for new treatment approaches that will be able to work outside the limits of the traditional rehabilitation methods. The combination of further studies involving basic neuroscience, neuroengineering, clinical trials, and personalized medicine will enhance our ability to stimulate adaptive plasticity and thus make life easier for people with different degrees of neurological health and illness. These measures are likely to change the way doctors think about recovery, as they will provide more routes to regain both function and strength in the damaged and elderly brain [34].

Acknowledgements

This work was not funded or sponsored by any outside source. The author had independently conceptualized, written and reviewed this manuscript. The author recognizes the wider scientific community, the foundation of whose study has led to the knowledge of neuroplasticity and has guided the views expressed in this review.

Conflict of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Funding Source

The study did not have any special grant awarded by a funding agency in the community, business or non-profit sectors.

Bibliography

1. Pascual-Leone Alvaro, *et al.* "The Plastic Human Brain Cortex". *Annual Review of Neuroscience* 28 (2005): 377-401.
2. Bliss Tim V P and Terje Lømo. "Long-Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anaesthetized Rabbit Following Stimulation of the Perforant Path". *The Journal of Physiology* 232.2 (1973): 331-356.
3. Gu Qiang. "Neuromodulatory Transmitter Systems in the Cortex and Their Role in Cortical Plasticity". *Neuroscience* 111.4 (2002): 815-835.
4. Malenka Robert C and Mark F Bear. "LTP and LTD: An Embarrassment of Riches". *Neuron* 44.1 (2004): 5-21.
5. Dayan Eran and Leonardo G Cohen. "Neuroplasticity Subserving Motor Skill Learning". *Neuron* 72.3 (2011): 443-454.
6. Nudo Randolph J. "Recovery after Brain Injury: Mechanisms and Principles". *Frontiers in Human Neuroscience* 7 (2013): Article 887.
7. Nelson Summer B and Valakh, Vera. "Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders". *Neuron* 87.4 (2015): 684-698.
8. Turrigiano Gina. "Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function". *Cold Spring Harbor Perspectives in Biology* 4.1 (2012): Article a005736.
9. Yizhar Ofer, *et al.* "Optogenetics in Neural Systems". *Neuron* 71.1 (2011): 9-34.

10. Kleim Jeffrey A and Theresa A Jones. "Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage". *Journal of Speech, Language, and Hearing Research* 51.1 (2008): S225-S239.
11. Feldman Daniel E. "Synaptic Mechanisms for Plasticity in Neocortex". *Annual Review of Neuroscience* 32 (2009): 33-55.
12. Kolb Bryan and Robbin Gibb. "Brain Plasticity and Behaviour in the Developing Brain". *Journal of the Canadian Academy of Child and Adolescent Psychiatry* 20.4 (2011): 265-276.
13. Park Hyunsoo and Mu-ming Poo. "Neurotrophin Regulation of Neural Circuit Development and Function". *Nature Reviews Neuroscience* 14.1 (2013): 7-23.
14. Johnson Mark H. "Functional Brain Development in Humans". *Nature Reviews Neuroscience* 2.7 (2001): 475-483.
15. Kolb Bryan and Ian Q Whishaw. "Brain Plasticity and Behavior". *Annual Review of Psychology* 49 (1998): 43-64.
16. Tau Gregory Z and Bradley S Peterson. "Normal Development of Brain Circuits". *Neuropsychopharmacology* 35.1 (2010): 147-168.
17. Sale Alessandro., et al. "Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy". *Physiological Reviews* 94.1 (2014): 189-234.
18. Takeuchi Naoyuki and Shin-Ichi Izumi. "Maladaptive Plasticity for Motor Recovery after Stroke". *Neural Plasticity* (2012): Article 359728.
19. Quartarone Angelo and Mark Hallett. "Emerging Concepts in the Physiological Basis of Dystonia". *Movement Disorders* 28.7 (2013): 958-967.
20. Krakauer John W. "Motor Learning: Its Relevance to Stroke Recovery and Neurorehabilitation". *Current Opinion in Neurology* 19.1 (2006): 84-90.
21. Lövdén Martin., et al. "Experience-Dependent Plasticity of White-Matter Microstructure Extends into Old Age". *Nature Neuroscience* 16.7 (2013): 973-975.
22. van Praag Henriette., et al. "Running Enhances Learning and Hippocampal Neurogenesis in Mice". *Nature Neuroscience* 2.3, 1999): 266-270.
23. McEwen Bruce S. "Stress and Hippocampal Plasticity". *Annual Review of Neuroscience* 22 (1999): 105-122.
24. Irwin Michael R., et al. "Sleep Disturbance, Inflammation, and Depression". *Biological Psychiatry* 80.1 (2016): 15-30.
25. Cramer Steven C., et al. "Harnessing Neuroplasticity for Clinical Applications". *Brain* 134.6 (2011): 1591-1609.
26. Reis Jan., et al. "Noninvasive Cortical Stimulation Enhances Motor Skill Acquisition over Multiple Days through an Effect on Consolidation". *Proceedings of the National Academy of Sciences* 106.5 (2009): 1590-1595.
27. Krakauer John W., et al. "Getting Neurorehabilitation Right: What Can Be Learned from Animal Models?" *Neurorehabilitation and Neural Repair* 26.8 (2012): 923-931.
28. Grefkes Christian and Nick S. Ward. "Cortical Reorganization after Stroke: How Much and How Functional?" *The Neuroscientist* 20.1 (2014): 56-70.
29. Buch Ethan R., et al. "Neuroplasticity: Concepts, Mechanisms, and Therapeutic Implications". *Journal of Clinical Investigation* 127.11 (2017): 4472-4480.
30. De Sousa Fernandes Marcelo S., et al. "Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies". *Neural Plasticity* (2020): Article 8856621.
31. Phillips Catherine. "Brain Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection". *Neural Plasticity* (2017): Article 7260130.
32. Ploughman Michelle., et al. "Brain-Derived Neurotrophic Factor Contributes to Recovery of Skilled Reaching after Focal Ischemia in Rats". *Stroke* 40.4 (2009): 1490-1495.

33. Evancho Tyler and Ryan McGregor. "A Review of Combined Neuromodulation and Physical Therapy Interventions for Enhanced Neurorehabilitation". *Neuroscience and Rehabilitation* 46.2 (2023): 123-138.
34. Lu Chen, *et al.* "Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke". *Neural Plasticity* (2019): Article 5271573.