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Abstract
   There were 109,600 premature fatalities due to opioid induced overdoses in 2023. Despite a substantial body of research across 
the globe related to substance and non-substance behavioral addictions, the USA FDA-approved solutions, which include prescribing 
powerful opioids to reduce harm or the utilization of the narcotic antagonist, Naltrexone, a mu-opioid receptor blocker that works by 
the concept of ‘psychological extinction” pose significant challenges. The former increase the risk of addiction, while the latter often 
suffer from poor patient compliance. This has led to an increase in opioid induced fatalities. Our team has continuously promoted 
early genetic addiction risk testing and pro-dopamine regulation via a nutrigenomic complex known as KB220 with 35 published 
clinical trials that have shown to induce “dopamine homeostasis” or even “hedonicstasis. Our group developed the statistically vali-
dated array of ten reward gene polymorphisms known as Genetic Addiction Risk Severity (GARS) with the primary identification of 
dopamine dysregulation. Here we review the evidence supporting the coupling of the GARS and KB220 as putative solutions to the 
ongoing opioid and drug addiction global pandemic. The data supports the use of genetic testing in pain and bariatric clinics, and 
chemical dependency programs which will help reduce the prescription of opioids and the induction of hedonic homeostasis. This 
presents a challenging but promising opportunity for the field of addiction psychiatry.
Keywords: Addiction; Dopamine; Reward System; GARS

It is indeed noteworthy that from 1999-2020, at least 932,000 
people in the United States died from a drug overdose, and 564,000 
of those deaths was due to opioids [1,2]. Importantly since 1999, 
excluding 2018, opioid induced death rate has soring and unfor-
tunately record-setting [1-13]. Data derived from the Centers for 
Disease Control and Prevention’s (CDC) National Center for Health 
Statistics (NCHS) revealed 100,306 drug induced overdose fatali-
ties in 2021. These deaths represent a 28.5 % increase compared 
to the 78,056 fatalities reported in 2020 [3]. If we continue on this 
path, we could expect as projected by the current USA drug czar to 
reach 165,000 by 2025. Indeed, this is a real challenge for addic-
tion psychiatry.

The only FDA approved treatment to help reduce harm avoid-
ance in Opioid Use Disorder (OUD) involves the provision of pow-
erful opioids as a substitution method. Our team has previously 
argued against this approach, advocating for the short-term use of 
opioid only in specific cases, such as terminal cancer patients. [13]. 

Along these lines there is some evidence to suggest the remain-
ing untreated people had an increased risk for mortality, HIV infec-

tion and even criminal activity [14]. With this stated, the purpose 
of this perspective is to provide some novel out of the box think-
ing to evoke a recapitalization of therapeutic approaches, includ-
ing genetic screening. We believe followed by intensive clinical and 
animal studies, the inclusion of testing for pre-addiction and sub-
sequent early identification, could significantly reduce the known 
500 billion annual cost [15,16]. Unfortunately, in 2020, 40.3 million 
inhabitants of the United States were diagnosed primarily by rely-
ing on the Diagnostic and Statistical Manual of Mental Disorders, 
5th Edition, (DSM-5), substance use disorder (SUD). However, ear-
ly-stage SUD or even people born with a number of dysfunctional 
reward polymorphic genes, lacks an acceptable term like pre-ad-
diction or Reward deficiency Syndrome (RDS) [18]. 

One of the novel conceptualizations, suggested for inclusion 
in the DSM, is the “pre-addiction” construct, as it is juxtaposed to 
“prediabetes” [19-28]. Essentially, this concept as defined by the 
American Diabetes Association [20], involves individuals having 
abnormal insulin sensitivity (hemoglobin A1c of 5.7–6.4) and/or 
glucose tolerance tests (fasting blood glucose of 100-125 mg/dL; 
oral glucose tolerance test (OGTT) 2-hour blood glucose of 140-199 
mg/dL). It needs to be noted that prediabetes is a manifestation of 
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homeostatic dysfunction, and is linked to hedonistic impairments 
[23], such as hypodopaminergia in the mesolimbic brain reward 
circuitry [9], along with dysfunction in other neurotransmitters 
pathways, including serotonergic, cannabinergic, opioidergic, 
GABAergic, glutaminergic, and cholinergic abnormalities [24,25], 
collectively termed RDS [24-28]. It is generally agreed that the 
construct of “reward” is a key element of mental health. Dysregula-
tion in the neurotransmitter pathways mentioned above, either via 
genetic or epigenetic factors, can lead to aberrant substance and 
non -substance behavioral addiction seeking [29-33]. A known hy-
podopaminergia augments the chances that individuals with these 
pre-addictive traits (genetic) and/or states (epigenetic), may seek 
out anything that will provide a temporary alleviation of their 
unwanted RDS symptoms [34,35]. Indeed, this seeking behavior 
will exacerbate their neurological and psychiatric co-morbidities 
[36-38]. Since RDS encompasses co-morbidities that include ad-
dictive, compulsive and impulsive behaviors, GWAS have revealed 
significant gene polymorphisms, especially in dopamine regula-
tory genes, that are associated with a variety of abnormal behav-
iors including depression, anxiety, schizophrenia, post-traumatic 
stress disorder (PTSD), attention deficit hyperactivity disorder 
(ADHD), and autism spectrum disorders (ASD) [25,39-43]. Com-
ings [44] reported that incorporating early genetic screening uti-
lizing DNA polymorphic signatures, rather than relying solely on 
subjective diagnostic interviews, offers significant benefits. Impor-
tantly, while the term “pre-addiction” augurs well with the idea of 
prediabetes, and has preventive relevance for the lay public, in the 
world of scientific acumen we propose RDS for the scientific and 
clinical community since it reflects neurochemical alterations as 
well as modifications in functional connectivity [45,46].

Genetic Addiction Risk Severity (GARS) Screening for RDS
We are hereby proposing the early identification of RDS by em-

bracing the candidate gene approach developed by Blum’s group 
in 2014 known as Genetic Addiction Risk Severity (GARS) test and 
subsequent implication in the addiction neuroscience field such 
as revealing pre-addiction liability associated with opioid pain 
treatment [46] and the RDS Questionnaire [47], identifying pre-
addiction or RDS [48,49] early in age. Possible adoption of this ge-
netic risk assessment coupled with attempts to restore dopamine 

homeostasis (i.e., hedonicstasis) [50-67] may represent a frontline 
approach in the future of addiction psychiatry. 

An important consideration related to this suggestion is the po-
tential to develop a screening tool that stratifies individuals into 
mild, moderate, or high risk for developing addictive-like behav-
iors. Drawing from our foundational work [1] and further corrobo-
rated by researchers worldwide, the concept of pre-addiction is 
most accurately understood through the framework of dopamine 
dysregulation. This framework suggests that pre-addiction is de-
fined by a reduction in dopaminergic activity, stemming from dis-
rupted regulation across key neurotransmitter systems. This dys-
regulation compromises homeostasis in neurotransmitter release, 
receptor sensitivity, and neural network function. As of June 2025, 
PUBMED lists 1,529 relevant articles, with over 47% authored in-
dependently of our group. Additionally, 249 articles are indexed 
under the term “Reward Deficiency Syndrome.” While the label 
“pre-addiction” aligns conceptually with terminology used in early 
diabetes research, the bulk of scientific evidence points to imbal-
ances, i.e. deficits or excesses, in brain neurotransmitter activity. 
This is especially pertinent during adolescence, a period marked 
by significant neurodevelopmental changes, often referred to as a 
time of “reward dysregulation” [68].

McLellan., et al. [21] highlighted that the DSM-5 defines Sub-
stance Use Disorders (SUDs) using eleven equally weighted criteria 
related to impaired control, categorized along a three-stage sever-
ity continuum. The term “addiction” is typically reserved for severe 
SUDs, characterized by six or more symptoms, affecting around 
4-5% of adults. In contrast, individuals with mild to moderate SUDs 
(two to five symptoms) represent a much larger segment, approxi-
mately 13% of the population, and are responsible for a greater 
overall burden of substance-related harm. Recognizing this contin-
uum reinforces the clinical value of tools like the Genetic Addiction 
Risk Severity (GARS) test in addiction psychiatry.

For instance, Dennen., et al. [69] described a genetic panel com-
prising eleven polymorphisms across ten genes associated with 
the dopaminergic reward pathway. This panel included six single 
nucleotide polymorphisms (SNPs) in DRD1, DRD2, DRD3, DRD4, 
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OPRM1, and COMT; four simple sequence repeats in 5HTT, DAT1, 
DRD4, and MAOA; and a dinucleotide polymorphism in GABRA3. In 
a study using this GARS panel with 393 participants, 273 of whom 
also completed the Addiction Severity Index-Multimedia Version 
(ASI-MV), results demonstrated that risk was influenced by cumu-
lative gene variations. Individuals with ≥7 polymorphisms associ-
ated with reduced dopamine signaling showed significantly higher 
alcohol severity scores, while those with ≥4 such polymorphisms 
had higher drug severity scores. These findings support the poten-
tial of GARS as a predictive tool for pre-addiction.

Chronic pain affects millions, and prior studies [46,70] using 
RT-PCR and multiplex PCR/capillary electrophoresis evaluated 
SNPs in a ten-gene reward panel among 121 chronic opioid us-
ers (55 men, 66 women, average ages 54 and 53 years). Inclusion 
criteria required long-term opioid use with Morphine Milligram 
Equivalent (MME) ranging from 30-600 mg/day (men) and 20-180 
mg/day (women) over 12 months. Notably, 96% of participants 
had four or more risk alleles, and 73% had seven or more-strongly 
suggesting high genetic vulnerability to opioid and alcohol addic-
tion. These results advocate for early GARS screening at treatment 
initiation to reduce the risk of iatrogenic opioid dependence.

A compelling case reported by Bajaj., et al. [71] demonstrated 
the clinical utility of GARS in identifying elevated addiction risk in 
a woman with chronic pain syndrome. With GARS scores above 
four, the patient was treated using H-Wave® therapy, a safe, non-
addictive alternative to opioids. This personalised theragnostic ap-
proach reduced the likelihood of long-term neurobiological harm 
and opioid-related mortality.

Further, a case series [72] illustrated the benefit of combining 
GARS with a customized pro-dopaminergic intervention (KB220), 
tailored to an individual’s genetic profile. One female proband 
achieved sustained recovery over eight months, as verified 
through drug testing. Her father (a binge drinker) and mother (no 
SUD) also demonstrated behavioral improvements. GARS testing 
extended to their children revealed high risk for SUD. This three-
generation case underscores the promise of genetically informed 
interventions in promoting long-term recovery and improved fam-
ily outcomes.

Another notable application of GARS involves the legal system. 
While the justice system is founded on principles of free will, it oc-
casionally acknowledges genetic or psychological determinants. 
One case involved a 35-year-old male (AG) in remission from Alco-
hol Use Disorder, with five DWI convictions and a prior three-year 
prison sentence. After GARS testing revealed a hypodopaminergic 
condition, the court opted for a reduced sentence: five years of 
standard probation, fines, community service, monitoring, and lim-
ited jail time with work release. To date, our team has utilized GARS 
in around 30 individuals, collectively preventing over 220 years 
of incarceration, highlighting the potential of genetic evidence in 
guiding sentencing decisions. This case is the first to illustrate how 
genetically based “determinism” can influence legal outcomes over 
the presumption of free will [73].

In our most recent study [74], GARS was used to assess outcomes 
after bariatric surgery. At six months post-surgery, participants ex-
hibited reduced BMI and excess weight loss. Remarkably, 76% had 
GARS scores exceeding seven, indicating vulnerability to addictions 
involving drugs, alcohol, and food. The MAO (rs768062321) and 
DRD1 (rs4532) homozygous risk alleles were present in 38% and 
47% of participants, respectively. Among all 11 alleles screened, 
DRD4 (rs1800955) was significantly linked to changes in weight 
and BMI. Additionally, the COMT risk allele (rs4680) showed nega-
tive correlations with scores on the Eating Expectancies Invento-
ry (r = -0.4983, p < 0.05) and Pittsburgh Sleep Quality Index (r = 
-0.5482, p < 0.05). These findings further support the translational 
potential of GARS in tailoring care for individuals at high genetic 
risk. The GABRB3 risk allele (rs764926719) correlated positively 
with EEI (r = 0.6161, p < 0.01) and Food Cravings Questionnaire-
Trait Reduced (FCQ) scores (r = 0.6373, p < 0.01). The OPRM1 risk 
allele revealed a positive association with the Difficulties in Emo-
tion Regulation Scale (DERS) score (r = 0.5228, p < 0.05). They also 
identified correlations between DERS and BMI change (r = 0.61; p 
< 0.01). Accordingly, these data support the benefit of personalized 
genetic screening and psychosocial trait information when consid-
ering physician-patient interaction and counseling post bariatric 
surgery. In a 12-month follow-up results showed that carriers of 
the DRD2 A1 allele showed the highest compliance to the surgery 
as evidenced by a reduced BMI [75].
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Statistical Validation of Risk Alleles in GARS Test
To develop an accurate test to help identify those at risk for 

at least AUD, we developed the GARS test, consisting of ten genes 
and eleven associated risk alleles. Along these lines in order to sta-
tistically validate the selection of these risk alleles measured by 
GARS, we applied strict analysis to studies that investigated the 
association of each polymorphism with AUD or AUD-related con-
ditions published from 1990 until 2021. Specifically, this statisti-
cal analysis calculated the Hardy-Weinberg Equilibrium of each 

Gene/Polymorphism OR 95% CI for OR Post Risk
Dopamine D1 Receptor (DRD1): rs4532-risk allele G * 1.77 (1.01, 3.10) -

Dopamine D2 Receptor (DRD2): rs1800497-risk allele A1 1.45 (1.15, 1.90) 0.12
Dopamine D3 Receptor (DRD3): rs6280-risk allele C (Ser9Gly) 3.37 (1.54, 7.40) 0.20

Dopamine D4 Receptor (DRD4): rs1800955-risk allele C (48bp repeat VNTR) 1.56 (1.04, 2.36) 0.10
Dopamine Transporter Receptor (DAT1): SLC6A3 3′-UTR-risk allele A9 (40bp repeat VNTR) 1.18 (1.00, 1.45) 0.10

Catechol-O-Methyltransferase (COMT): rs4680-risk allele G (Val158Met) 1.43 (0.98, 2.10) 0.083
µ-Opioid Receptor (OPRM1): rs1799971-risk allele G (A118G) 1.47 (1.00, 2.18) 0.13

γ-Aminobutyric Acid (GABA) A Receptor, -3 Subunit (GABRB3): CA repeat-risk allele 181* 0.33 (0.14, 0.79) 0.06
Monoamine Oxidase A (MAO-A): 3′ 30bp VNTR-risk allele 4R DNRP * 0.62 (0.15, 2.63) 0.05

Serotonin Transporter Receptor (5HTT) Linked Promoter Region (5HTTLPR) in SLC6A4: 
rs25531-risk allele S′

1.23 (1.07, 1.40) 0.10

Table 1

*Not enough data. It is noteworthy to point out that for each gene polymorphism, the number of cases and controls has been indicated 
in table 1.

polymorphism in cases and controls. If available, the Pearson’s χ2 
test or Fisher’s exact test was applied to comparisons of the gender, 
genotype, and allele distribution. The results found the OR, 95% CI 
for OR, and a post-risk for 8% estimation of the population’s alco-
holism prevalence revealed a significant detection. The OR results 
showed significance for DRD1, DRD2, DRD3, DRD4, DAT1, COMT, 
OPRM1, and 5HTT at 5% [76]. 

Odds ratios and likelihood ratios of polymorphisms under 
consideration.

The Benefits of GARS Testing in SUD
GARS seems to be the only panel of genes with established poly-

morphisms reflecting the Brain Reward Cascade (BRC) [77] which 
has been associated with the ASI-MV alcohol and drug risk severity 
score. Any variations within this pathway, whether genetic or envi-
ronmental, may result in addictive behaviors. There are a number 
of benefits that have been reported with the utilization of GARS 
[77]. These include 1) knowledge of precise polymorphic associa-
tions can help in the attenuation of guilt and denial; 2) corrobo-
ration of family genograms; 3) assistance in risk-severity-based 
decisions about appropriate therapies, including pain medica-
tions and risk for addiction; 4) choice of the appropriate level of 
care placement (i.e., inpatient, outpatient, intensive outpatient, 

residential); 5) determination of the length of stay in treatment; 
6) determination of genetic severity-based relapse and recovery 
liability and vulnerability; 7) determination of pharmacogenetic 
medical monitoring for better clinical outcomes (e.g., the A1 allele 
of the DRD2 gene reduces the binding to opioid delta receptors in 
the brain, thus, reducing Naltrexone’s clinical effectiveness); and 8) 
supporting medical necessity for insurance scrutiny.

Function of Reward Genes in the GARS Test
5HT2A Receptor

Although the current version of the Genetic Addiction Risk Se-
verity (GARS) test does not assess the 1438G/A polymorphism of 
the 5HT2A receptor, it is expected that future iterations will incor-
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porate this SNP. Serotonin (5-hydroxytryptamine or 5-HT), discov-
ered in the 1940s, is a key neurotransmitter. Most 5-HT receptors 
are G protein-coupled receptors (GPCRs) with seven transmem-
brane domains, initiating intracellular signaling cascades upon 
activation, except for 5-HT3, which functions as a ligand-gated ion 
channel. The 5-HT2A receptor is composed of 471 amino acids in 
humans, rats, and mice, and is found in both central and peripheral 
tissues. In the brain, it is found mainly in the cerebral cortex, claus-
trum, and basal ganglia. This receptor downregulates cyclic AMP 
(cAMP) synthesis, thereby influencing the release and function of 
other neurotransmitters such as dopamine (DA), glutamate, gam-
ma-aminobutyric acid (GABA), and enkephalins. The prevalence of 
5-HT2A gene polymorphisms differs among populations. For ex-
ample, the minor allele is found six times less frequently in Black 
individuals compared to White individuals. Dysfunction in seroto-
nergic genes, including 5-HT2A, has been associated with suicidal 
ideation, childhood trauma, and criminal behavior [78,79].

5-HTTLPR (Serotonin Transporter-Linked Polymorphic Re-
gion)

The serotonin transporter (5-HTT), which is encoded by the 
SLC6A4 gene on chromosome 17q11.1-q12, is essential for the 
reabsorption of serotonin. A polymorphism known as 5-HTTLPR 
influences its activity, with the long (L) allele linked to greater 
transcriptional efficiency than the short (S) allele. Studies have 
shown that the L allele increases mRNA expression in human cell 
cultures. Saiz., et al. [80] reported a higher prevalence of -1438G 
and L allele carriers among alcohol-dependent individuals com-
pared to those with heroin dependence, suggesting these poly-
morphisms differentiate these disorders. Additionally, 5′ and 3′ 
SLC6A4 polymorphisms independently affect the risk of suicidal 
behavior [79]. Interestingly, individuals with genotypes associated 
with lower 5-HTT expression demonstrate enhanced responses to 
opioid analgesics, while the S allele has been linked to a height-
ened risk of chronic pain conditions. Moreover, the S allele is as-
sociated with increased vulnerability to alcohol dependence and 
related comorbidities [81]. In alcohol-dependent patients, relapse 
risk may be influenced by the presence of the S allele, possibly 
mediated through intermediate traits such as the Catechol-O-
Methyltransferase (COMT) Val158Met polymorphism. Discovered 
in 1957 by Julius Axelrod, COMT is an extracellular enzyme that 
degrades catecholamines (DA, norepinephrine, and epinephrine) 
by transferring a methyl group from S-adenosylmethionine. Serý., 

et al. [82] found a significant association between the Val158Met 
polymorphism and alcoholism in males, with notable differences 
in genotype frequencies between alcoholics and controls. The low-
activity COMT genotype (A/A) is more common in carriers of the 
DRD2 A1 allele. Cao., et al. [83] identified a higher frequency of the 
A allele at the −287 A/G polymorphism in heroin-dependent indi-
viduals. Rapid DA degradation due to the Val allele leads to lower 
synaptic dopamine levels, contributing to hypodopaminergia. This 
association has been reinforced by Vandenbergh., et al. [84] and 
others [85], linking the Val allele to substance use disorders. Li., et 
al. [86] reported that the COMT rs737866 TT genotype correlates 
with higher novelty seeking and earlier onset of heroin use than 
CT or CC genotypes. The Val158Met substitution significantly in-
creases DA catabolism, reducing dopaminergic signaling and thus 
affecting post-synaptic stimulation [87].

Monoamine Oxidase-A (MAOA)
Monoamine oxidase (MAO) is an enzyme located in the mito-

chondria that catalyses the oxidative deamination of monoamines, 
such as serotonin, dopamine, and norepinephrine, resulting in the 
formation of aldehydes and ammonia. Two isoforms exist, namely, 
MAO-A and MAO-B, both of which are targets for monoamine oxi-
dase inhibitors. MAO-A predominantly metabolizes serotonin, mel-
atonin, norepinephrine, and epinephrine, while MAO-B degrades 
phenylethylamine and benzylamine. Both isoforms process DA, 
tyramine, and tryptamine. The MAOA gene is located on the X chro-
mosome and features a polymorphism known as MAOA-uVNTR 
(variable number tandem repeat) [88], consisting of 30-bp repeats 
with 2-, 3-, 3.5-, 4-, 5-, or 6-copy variants [89]. Functional stud-
ies show the 3.5- and 4-repeat alleles are associated with higher 
transcriptional activity, whereas the 3-repeat allele shows lower 
activity [90-94]. Huang., et al. [95] explored how DRD2 gene asso-
ciations with alcoholism are modulated by MAOA polymorphisms. 
Individuals with both the MAOA 3-repeat allele and the DRD2 A1/
A1 genotype had a 3.48-fold increased risk of alcohol dependence 
with comorbid anxiety and depression, compared to those with the 
same MAOA allele and the DRD2 A2/A2 genotype [96].

Dopamine D1 Receptor Gene (DRD1)
The dopamine D1 receptor (DRD1), produced by the DRD1 

gene, is the most prevalent subtype of dopamine receptor in the hu-
man brain, with especially high expression in the caudate-putamen 
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region. This GPCR activates adenylyl cyclase and cAMP-dependent 
protein kinases. DRD1 plays key roles in neuronal development, 
modulation of D2 receptor activity, behavioral regulation, and re-
inforcement mechanisms. At least two DRD1 transcript variants 
are initiated at alternative transcription sites. DRD1 is implicated 
in numerous functions including motor control, social interaction, 
attentional processes, and reward. Betel., et al. [97] identified a 
higher frequency of the rs686 T allele in individuals with alcohol 
dependence. A specific DRD1 haplotype (rs686T-rs4532G) was 
also significantly associated with alcohol use disorder [98]. Fur-
thermore, DRD1-48A>A has been associated with novelty seeking, 
harm avoidance, and persistence. DRD1 polymorphisms have also 
been linked to rapid heroin addiction development [99], nicotine 
dependence [100], and bipolar disorder [101,102].

Dopamine D2 receptor gene (DRD2)
The DRD2 gene produces the D2 subtype of the dopamine re-

ceptor, a G protein-coupled receptor that functions by inhibiting 
adenylyl cyclase activity. There are two known isoforms, with a 
third variant generated through alternative splicing. In the mouse 
dentate gyrus, DRD2 surface expression is regulated by the calci-
um-binding protein NCS-1, which modulates synaptic plasticity, 
exploration, and memory. The DRD2 gene is one of the most widely 
studied in psychiatric genetics. Nearly a decade before Arvid Carls-
son and others received the Nobel Prize, DRD2 was linked to se-
vere alcoholism [103]. The Taq1A SNP (rs1800497), originally be-
lieved to reside in the DRD2 3′ untranslated region, was later found 
in exon 8 of the neighboring ANKK1 gene. This discovery raised 
the possibility that the functional impact of Taq1A might be me-
diated through either or both genes due to shared haplotypes or 
converging pathways [103-105]. The A1+ genotype (A1/A1 or A1/
A2) is associated with up to a 40% reduction in D2 receptor den-
sity compared to the A2/A2 genotype [106-108], contributing to 
hypodopaminergic functioning in the reward circuitry. Additional 
DRD2 polymorphisms, including rs6277 (C957T), are associated 
with reward deficiency behaviors such as substance use disorders 
[109]. Hirvonen., et al. [110] demonstrated that the T+ genotype 
(T/T or T/C) of rs6277 is linked to reduced mRNA translation and 
receptor density, increasing susceptibility to alcohol dependence, 
a trait with moderate to high heritability [111,112]. Kazantseva., 
et al. [113,114] found the ANKK1/DRD2 Taq1A variant associated 
with higher neuroticism in both sexes, and SLC6A3 rs27072 with 

persistence. Notably, in males only, the A2/A2 genotype was linked 
to increased novelty seeking and reduced reward dependence.

Dopamine D3 Receptor Gene (DRD3)
The dopamine D3 receptor, encoded by the DRD3 gene in hu-

mans, is a subtype of dopamine receptors that is negatively coupled 
to cyclic AMP signaling. It is thought that DRD3 gene is expressed 
in older regions of the brain phylogenetically. Different isoforms 
of the DRD3, resulting from alternative splicing, leads to the tran-
scription of multiple polymorphisms influencing emotional regula-
tion, responses to alcohol and other drugs of abuse. 

Vengeliene., et al. [115] reported elevated DRD3 mRNA expres-
sion in the striatum following one year of voluntary alcohol intake 
in alcohol-preferring rats. Notably, the Gly9/Gly9 genotype of the 
DRD3 Ser9Gly polymorphism has been linked to increased traits 
associated with obsessive personality disorder [116]. Additionally, 
Retz., et al. [117] identified a significant association between the 
DRD3 polymorphism and impulsivity, as measured by Eysenck’s 
Impulsiveness Questionnaire (EIQ) and the German short form of 
the Wender Utah Rating Scale (WURS-k), in individuals diagnosed 
with ADHD. Interestingly, the same study found the Ser9Gly poly-
morphism to be associated specifically with violent, but not non-
violent, ADHD individuals. Among these, heterozygous violent sub-
jects exhibited the highest impulsivity and WURS-k scores, while 
homozygous individuals showed significantly lower levels, sug-
gesting a potential heterosis effect.

Opiates are known to augment DA neurotransmission [118] No-
tably, Spangler., et al. [118] observed substantial elevations in D3 
receptor mRNA expression, an 85% increase in the caudate-puta-
men and a 165% increase in the ventral midbrain, including the 
substantia nigra and ventral tegmental area using identical RNA ex-
tracts. Most recently, our laboratory, in collaboration with Gondre-
Lewis at Howard University, identified a higher prevalence of the 
polymorphic DRD3 risk allele (rs6280) compared to the µ-opioid 
receptor gene variant (rs1799971) among African American indi-
viduals diagnosed with chronic opioid use disorder Gondre-Lewis., 
et al. [119] suggested that dopamine-related receptors could influ-
ence opioid-seeking behavior and nicotine dependence in African 
Americans [120]. In addition, preclinical data link DRD3 to alcohol 
[153-155], food [156], caffeine [157] and cocaine intake [158], as 
well as sleep behavior [159,160].
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Dopamine D4 Receptor Gene (DRD4)
The dopamine D4 receptor is encoded by the DRD4 gene, and is 

located on chromosome 11 at 11p15.5 in humans. Like the DRD2 
receptor, DRD4 is a G protein-coupled receptor (GPCR) that inhib-
its cyclic AMP (cAMP) production upon activation. The DRD4 gene 
contains several known polymorphisms, including a 48-base pair 
variable number tandem repeat (VNTR) in exon 3, a 13-base pair 
deletion in exon 1 (positions 235-247), a C-521T substitution in 
the promoter region, a Val194Gly substitution, a 12-base pair re-
peat in exon 1, and a polymorphic 120 bp tandem duplication. The 
exon 3 VNTR ranges from 2 to 11 repeats, with alleles containing 
6 to 10 repeats classified as the “long” variants. Allelic frequencies 
vary across populations; notably, the 7-repeat (7R) allele is com-
mon in the Americas but relatively rare in Asian populations.

The 7R allele of DRD4 has been loosely associated with psycho-
logical traits and conditions such as attention-deficit/hyperactiv-
ity disorder (ADHD), and is believed to confer reduced responsive-
ness to dopamine, potentially contributing to altered behavioral 
regulation. This allele is estimated to have emerged approximately 
40,000 years ago. Chen., et al. [121,122] found that nomadic 
groups exhibited higher frequencies of the 7R allele compared to 
sedentary populations. Furthermore, they observed that popula-
tions which migrated over longer distances between 1,000 and 
30,000 years ago had a greater prevalence of 7R/long alleles.

DRD4 polymorphisms have been linked, with mixed findings, 
to various psychiatric and neurological disorders including ADHD, 
addictive behaviors, eating disorders (e.g., binge-eating, anorexia, 
bulimia), bipolar disorder, Parkinson’s disease, and schizophrenia, 
with variable associations to novelty seeking traits [123]. Some 
studies suggest that parenting quality may influence cognitive de-
velopment in children carrying the 7R allele. Specifically, higher 
quality parenting has been correlated with improved effortful con-
trol in 4-year-olds, possibly mediated by epigenetic mechanisms 
[124].

Emerging evidence indicates that the 7R VNTR may be associ-
ated with increased susceptibility to substance-seeking behavior, 
potentially due to diminished dopamine sensitivity or resistance, 
contributing to a state of hypodopaminergia [124–128]. Bieder-
man., et al. [129], using survival analysis, reported that by age 25, 

76% of individuals carrying the 7R allele met criteria for ADHD, 
compared to 66% of those without the allele. Additionally, other 
studies have linked the 7R variant with increased risk for both al-
coholism [130] and heroin dependence [131].

Preclinical studies further support the role of DRD4 in modulat-
ing behavior related to reinforcement. These include drug-seeking 
and reward-related responses to food [161], cocaine [161-164], 
methylphenidate [164,165], and amphetamine [164].

Dopamine Transporter Gene (DAT1)
The dopamine (DA) transporter, also known as the dopamine 

active transporter (DAT, SLC6A3), functions by reabsorbing dopa-
mine from the synaptic cleft back into the cytosol through a mem-
brane-spanning protein pump. The gene encoding the DAT protein 
is located on human chromosome 5, spans approximately 64 kilo-
bases, and contains 15 coding exons. After reuptake, dopamine is 
further sequestered into vesicles by other transporters for future 
storage and release at the brain’s reward center, the nucleus ac-
cumbens [132–136]. Dopamine is co-transported across the neu-
ronal membrane along with sodium ions. Additionally, changes in 
membrane polarity significantly affect transport rates, with depo-
larization promoting dopamine release at the nucleus accumbens 
[137,138]. Notably, DAT expression in the brain is highest in the 
nigrostriatal, mesocortical, and mesolimbic pathways, as well as in 
the substantia nigra pars compacta [139]. Preclinical studies have 
demonstrated that DAT plays a role in the intake or preference for 
substances such as cocaine [166], methylphenidate [167], alcohol 
[166], and even food [168].

MU opioid receptor gene 
The μ-opioid receptors (MOR) are a class of opioid receptors 

with a high affinity for both beta-endorphins and enkephalins but 
little to no affinity for dynorphins which bind to kappa receptors in 
the brain. They are also referred to as μ(mu)-opioid peptide (MOP) 
or (MOP) receptors. The prototypical μ-opioid receptor agonist is 
morphine. Moreover, morphine is the primary psychoactive alka-
loid in opium and for which the receptor was named, with mu being 
the first letter of the term Morpheus. One primary action of the mu 
opioid receptors is its inhibitory role onto the GPCR that stimulates 
the G alpha subunit thus blocking adenylate cyclase function effec-
tuating reduced cAMP concentration. In humans there are three of 
the μ-opioid receptors - μ1-3. [140].
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The μ-opioid receptors exist for the most part presynaptically, 
in the periaqueductal gray brain area, and also in dorsal horn and 
spinal cord. Other areas where they have been located include the 
external plexiform layer of the olfactory bulb, the nucleus accum-
bens, cerebral cortex, amygdala and the nucleus of the solitary 
tract. One important function of the mu opioid receptor is to sup-
press the GABA presynaptic release which results in an increase in 
DA release at the nucleus accumbens [141]. The most important 
regulatory proteins for the MOR are the beta-arrestines and RGS 
proteins [142,143]. Preclinical studies have shown that MOR levels 
are associated with feeding [169, 170], and exercise [171].

GABRB3 receptor gene
Gamma-aminobutyric acid receptor subunit beta-3 is a pro-

tein that in humans is encoded by the GABRB3 gene. It is located 
within the 15q12 region in the human genome and spans 250kb. 
This gene includes 10 exons within its coding region. It is known 
that via alternative splicing the gene codes for a number of protein 

Gene Risk allele  Comment
Dopamine D1 (DRD) 48A G normal

Dopamine D2 (DRD2) A1 A2 normal
Dopamine D3 (DRD3) C T normal
Dopamine D4 (DRD4) 7R 4R normal

Dopamine Transporter 
(DAT1)

9R = Fast uptake 
10R = slow uptake

Fast DAT could result in hypodopaminergic and slow could result in hyper dopaminergic

Serotonin Transporter 
(5HTTLLR)

S Count S not L

Catechol-O-methyl-
transferase (COMT)

G The G allele = Val substation that causes the enzyme COMT which breaks down Dopamine 
in the synapse too fast. This could also lead to hypodopaminergic trait. The A = Met = 

normal
Mu opiate receptor 

(OPRM1)
G The G allele G = ASP this contributes to addiction to opiates and alcohol. A = ASN normal. 

Another name is MOR-Mu opiate receptor
GABA A receptor sub-

unit (GABRA3)
181 This 181 SNP reduces the sensitivity of the GABA receptor and as such increases the 

chance for alcoholism and other drugs of abuse. It increases risk for stress induction, 
which can also cause relapse

MAOA uVNTR 4R = Fast uptake

3R = slow uptake

This is a strange gene. It sits on the mitochondria in the neuron. MAO is involved in the 
breakdown of dopamine and serotonin. The 4R increases the breakdown and 3R slows 

the breakdown. Since the gene sits on the X chromosome not the Y chromosome females 
are XX and males are XY. This means that females have two alleles to count, and males 

only have one
Serotonin 5HTA2 

Receptor
C Alcohol dependent (AD) patients homozygous for C allele had significantly lower age at 

onset of alcohol problems than subjects having at least one T allele. The results suggest a 
potential role of the T102C HTR2A polymorphism in development of alcohol dependence

Serotonin 5HTA2 
Receptor

1438A allele Another polymorphism the 5-HT (2A) -1438A allele was significantly more common in 
patients than controls [0.55 and 0.45, respectively; corrected P = 0.042, OR = 1.51 (95 % 

CI = 1.13–2.03)]

Table 2: RDS-associated SNPs.

isoforms. These isoforms are all subunits in the GABAA receptor a 
ligand-gated ion channel. In fact, the beta-3 subunit is expressed 
at different levels within the piriform cortex, olivary body, cerebral 
cortex, hippocampus, cerebellum, thalamus of the brain at different 
times of development and maturity. GABRB3 deficiencies are impli-
cated in an array of human neurodevelopmental disorders, such as 
Autism [144-147]. This gene is located in a gene cluster with two 
other genes, GABRG3 and GABARA5 [147]. During development, 
when the GABRB3 subunit functions optimally, its role in the GA-
BAA receptor enables proliferation, migration, and differentiation 
of precursor cells that lead to the appropriate development of the 
brain [148]. Because of its inhibitory properties this polymorphism 
induces a hypodopaminergic trait. GABA signaling has also been 
shown in preclinical studies to be associated with feeding behavior 
[163,172,173].

To enhance comprehension, we developed the following table 
2 to provide a snapshot of the reward gene polymorphisms mea-
sured by the GARS test.
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Table 2 RDS-associated single nucleotide polymorphisms 
(SNPs) may be identified through various suitable techniques, 
including DNA sequencing of individuals diagnosed with one or 
more Reward Deficiency Syndrome behaviors. Upon validation, 
these newly identified SNPs may be incorporated into diagnos-
tic panels such as the GARS test. Once validated, the presence of 
one or more RDS-associated SNPs in nucleic acids obtained from 
a patient’s biological sample can be determined using any appro-
priate current or future assay. This includes, but is not limited to, 
site-specific hybridization, restriction enzyme digestion, and DNA 
sequencing methods. Table 2 outlines a number of preferred RDS-
associated SNPs whose detection is applicable to the GARS testing 
methodology.

GWAS compared to candidate approaches
It is generally agreed that the future of addiction psychiatry 

using GWAS will provide a window into new therapeutic targets 
as well as a potential diagnostic tool to unveil ADDICTGENE and 
other SNPs that load onto the concept of pre-addiction and asso-
ciated vulnerability. However, there has been strong push back in 
terms of arguing the importance of the older candidate gene ap-
proach. Our laboratory has been a proponent of using the Genetic 
Addiction Risk Severity (GARS) as one potential way to early iden-
tify pre-addiction and futuristic addiction liability [149]. We have 
come to this conclusion based on a number of recent GWAS and 
subsequent convergence thereof.

Since 1990, published addiction psychiatry articles have ex-
ceeded 11,495. GARS test results have identified risk for reward 
deficiency behaviors in cohorts from polysubstance and pain 
clinics, post-surgical bariatrics, and DWI offenders facing prison 
time. Since Blum et al first published in (1990) concerning the as-
sociation of the DRD2 gene polymorphism and severe alcoholism, 
confirmation has been mixed and controversial. Recently a meta-
analysis of 62 studies revealed a significant link between DRD2 rs 
1800497 and Alcohol Use Disorder (AUD). Additionally, research 
from Yale University showed that a haplotype block of the DRD2 
gene A1 allele was associated with AUD and heroin dependence. 
GWAS studies of depression and suicide in 1.2 million veterans 
confirmed the first psychiatric candidate gene study finding from 
Blum., et al. 1990; a significant link between the minor DRD2 al-

lele, Taq A1 (rs 1800497 C > T) and severe alcoholism. Moreover, 
the DRD2 rs1800497 is associated with suicide behaviors robustly 
at P = 1.77 × 10-7. DNA polymorphic alleles underlying SUD with 
multiple substances were mapped via chromatin refolding, show-
ing that the DRD2 gene and polymorphism (s) was the top gene sig-
nal (DRD2, P = 7.9 × 10-12). Thus, we conclude that GWAS should 
end the controversy concerning the DRD2 gene being at least one 
determinant of Reward Deficiency Syndrome (RDS) first reported 
in the Royal Society of Medicine journaling 1996 [150]. For an up-
dated review of GARS and to help enhance comprehension of these 
concepts see [151].

Summary
Challenges of genetic testing include the psychological impact 

on individual, potential misunderstanding of the consequences of 
genetic predisposition and the risk discrimination. Genetic infor-
mation can be used to deny persons access to employment, insur-
ance and other essential services. Interestingly, most states have 
some legislation aimed at preventing discrimination, however, cov-
erage by most state law is spotty. Now with the US Genetic Informa-
tion Non-Discrimination Act (GINA) of 2008 in place, individuals 
are protected by federal law. Physicians may find that they have 
new duties created by reports of genetic test results, including ad-
dressing common misunderstandings of the consequences of pos-
sessing an affected allele and alerting third parties who may share 
the patient’s genetic endowment [152]. 

Many of the resulting metabolic conditions in infants are treat-
able through specialized diets and/or pharmacological interven-
tions. Early detection is critical, as it can prevent mortality, intel-
lectual disability, and other serious complications. Disorders such 
as phenylketonuria (PKU) and galactosemia require the expertise 
of pediatric metabolic specialists and nutritionists, who can pre-
scribe and manage highly specific dietary regimens. In these cases, 
parental education is essential to ensure adherence to dietary re-
strictions and to perform routine blood and urine monitoring to 
safeguard the child’s health.

Given this established model, could a similar level of clini-
cal expertise and structured intervention be applied to the early 
identification and management of predisposition to addiction, or 

Citation: Kenneth Blum., et al. “Benefits of Incorporating Candidate Genetic Screening for Pre-Addiction Vulnerability in the Face of the Opioid Crisis: 
An Opportunity for Addiction Psychiatry". Acta Scientific Neurology 8.11 (2025): 21-40.



31

Benefits of Incorporating Candidate Genetic Screening for Pre-Addiction Vulnerability in the Face of the Opioid Crisis: An Opportunity for 
Addiction Psychiatry

what some have termed pre-addiction? Beyond the ethical de-
bate around labelling, a fundamental question arises: would early 
identification of pre-addiction, potentially even at birth, provide a 
meaningful opportunity for preventive intervention?

To this end, an intriguing study by Yanovich., et al. [174] sheds 
light on the interaction between genetic predisposition, environ-
mental stress, and vulnerability to addiction-related behaviors. 
Using selectively bred mice that were either stress-resilient and 
socially dominant (Dom) or stress-vulnerable and socially submis-
sive (Sub), the researchers explored the impact of stress on the de-
velopment of cocaine preference. In a conditioned place preference 
(CPP) paradigm, Sub mice initially exhibited aversion to cocaine, 
while Dom mice showed a preference. However, after a four-week 
regimen of chronic mild stress (CMS), Sub mice demonstrated a 
dramatic (>400%) increase in cocaine attraction, whereas Dom 
mice’s responses remained unchanged.

Further analysis of hippocampal gene expression revealed 
striking differences: in Sub mice, both stress and cocaine expo-
sure significantly upregulated corticotropin-releasing hormone 
(CRH) expression (>100%), whereas in Dom mice, CRH elevation 
occurred only in response to cocaine. Additionally, stress led to 
marked reductions in DRD1 (>60%) and DRD2 (>50%) receptor 
expression in Sub mice, changes that were not observed in the 
Dom group. These findings suggest that social hierarchy and stress 
resilience influence dopaminergic regulation in the hippocam-
pus, shaping susceptibility to addiction-like behaviors. The study 
underscores the potential role of early biological and behavioral 
markers in identifying individuals at elevated risk for addiction, 
supporting the broader consideration of early-life screening and 
intervention in pre-addiction. This demonstration points to the 
importance of evaluating the genetic trait (DNA polymorphisms) 
of an individual as measured by GARS, along with the utilization 
of not only GENOGRAMS to inform the clinician of family history 
of addictive behaviors (e.g. cocaine) but social rank as well [174].

Conclusion
We are proposing that development of theragnostic approaches 

targeting hypodopaminergic brain function represents an impor-
tant and promising novel intervention. Moreover, early identifi-

cation with GARS in children with the probability that carriers of 
polymorphic DNA risk antecedents as a pre-addiction trait seems 
reasonable. The probability that children identified with RDS and 
subsequent addictive -like behaviors have 74.4% Bayesian Predic-
tive Value must be recognized. It is indeed plausible that these in-
dividuals may be more likely to commit crimes as adolescents or 
develop psychopathologies as adults. Our proposed approach de-
scribed herein might be cost-effective in terms of averting crime 
and SUD and promoting normal development, leading to a reward-
ing and successful adulthood.
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