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Introduction

 Abstract
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We examine the relationship between substance use disorder (SUD) and schizophrenia, emphasizing the role of dopaminergic 
neurotransmission and genetic predispositions within the context of Reward Deficiency Syndrome (RDS). Our hypothesis posits that 
a deficiency in gamma-type endorphins leads to persistent hyperdopaminergic activity, amplifying schizophrenia-related symptoms 
such as hallucinations. Thus, alcohol use may function as a physiological self-healing mechanism by increasing gamma-endorphin 
levels, thereby mitigating dopaminergic hyperactivity. Additionally, we propose that the DRD2 Taq1 A2 allele could offer protection 
against SUD in certain individuals with schizophrenia, whereas the Taq1 A1 allele may heighten susceptibility to SUD due to impaired 
dopaminergic reward processing. The proposed dual genetic pathways arise from the independent yet interrelated genetic bases of 
SUD and schizophrenia, both involving the dopamine system. Epidemiological studies reveal that psychiatric comorbidity correlates 
with heightened psychopathology, risky behaviors, and diminished psychosocial performance. Further advanced research, including 
neuroimaging, genome-wide association studies (GWAS), and epigenetic analyses, is needed to unravel the dopaminergic mecha-
nisms underlying SUD and schizophrenia. Understanding these genetic links may pave the way for precise interventions tailored to 
specific subpopulations. The findings extend the conceptualization of RDS as a framework for understanding psychiatric and addic-
tive disorders, reinforcing the critical role of dopamine dysregulation in their etiology. 

This hypothesis arises from the observed high comorbidity be-
tween substance use disorder (SUD) and schizophrenia. It builds 
on the recognized role of dopaminergic neurotransmission in the 
genetic underpinnings of schizophrenia and its association with 
genetic susceptibility to Reward Deficiency Syndrome (RDS). 
The hypothesis suggests that inadequate levels of gamma-type 
endorphins could contribute to self-healing behaviors, which 
may present as substance use disorder (SUD) in individuals with 
schizophrenia. Additionally, the Taq1 A2 allele of the DRD2 gene 
is suggested to act as a protective factor against the onset of sub-
stance use disorder (SUD) in individuals with schizophrenia.

A Brief Synopsis of the Genetic Antecedents of Schizophrenia
Schizophrenia is influenced by complex interactions between 

multiple genes and environmental factors, characterizing it as a 
polygenic disorder [1]. Genetic research has aimed to identify sub-
types or endophenotypes of schizophrenia to enhance diagnostic 
reliability. Many genes implicated in psychiatric conditions encode 
proteins critical to synaptic transmission. These genetic studies 
face challenges such as ambiguous diagnostic criteria and phe-
nocopies, where schizophrenia symptoms mimic those caused by 
substance abuse [2].

A range of candidate genes has been identified for schizophre-
nia, particularly those involved in the development of the mesocor-
tical-limbic system. Promising animal model research highlights 
genes governing GABA, glutamate, and dopamine pathways. GABA 
neurons that co-express the calcium-binding protein parvalbumin 
are linked to glutamatergic metabotropic receptors and dopamine 
D3 receptors. Other notable genes include those encoding catechol-
O-methyltransferase (COMT) and neuroregulators that influence 
neurotransmitter receptor expression and activation, such as glu-
tamate receptors. Additional significant findings include the gene 
for dystrobrevin-binding protein (with an unclear brain function), 
serotonin 5-HT-2A receptor genes on chromosome 13q14-q23, and 
alpha-7 nicotinic cholinergic receptor subunit genes. Chromosomal 
breakpoints in DISC1 and DISC2, which are associated with schizo-
phrenia and affective disorders, play a role in neurite growth [3]. 
Specific chromosomal regions, including but not limited to, 22q12-
q13, 8p22-p21, 6p24-p22, 13q14-q32, 5q22-q31, 10p15-p11, 
6q21-q22, 15q13-q14, 9q34.3, 4q24-q32, 18 and 1q32-q41, have 
demonstrated potential associations with schizophrenia. Emerging 
evidence also links schizophrenia to regions on chromosomes 11q 
and 14p [3]. The cannabinoid CB1 receptor gene located on 6q14-
q15 may affect gene expression throughout brain development. 
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Hoenicka., et al.’s research suggests that allele 4 of the cannabinoid 
receptor 1 (CNR1) gene microsatellite occurs less frequently in in-
dividuals with schizophrenia than in healthy controls. Notably, no 
differences were observed in relation to SUD within this schizo-
phrenic population, suggesting that variations in the cannabinoid 
system may independently influence susceptibility to schizophre-
nia [4].

Schizophrenia has been linked to the single nucleotide poly-
morphism C957T of the DRD2 gene located on chromosome 11q, 
with an overexpression of the C homozygote genotype observed 
in patients compared to controls. This indicates that variations in 
the DRD2 gene may be a key factor in enhancing vulnerability to 
schizophrenia [5]. However, dopamine receptor involvement in hy-
perfunctioning of dopaminergic systems in schizophrenia remains 
controversial. Among the five primary subtypes of dopamine re-
ceptors (D1-D5), D2 receptors are traditionally regarded as the 
most significant. Evidence suggests that the clinical effectiveness 
of antipsychotic drugs is linked to their capacity to block D2 recep-
tors, supporting the notion that D2 receptor binding may be both 
necessary and sufficient for antipsychotic effects [6-16]. However, 
because the DRD2 gene contains relatively few common polymor-
phisms within its coding region [15], fewer studies have examined 
the relationship between DRD2 polymorphisms and antipsychotic 
drug response compared to the serotonin system. In recent years, 
D3 and D4 receptors have also been linked to the expression of 
schizophrenia symptoms [7-9].

Comorbidity of substance use disorder (SUD) and schizophre-
nia

Clinical and epidemiological studies emphasize the high preva-
lence of co-occurrence between substance use disorder (SUD) and 
psychiatric disorders, including schizophrenia. Psychiatric comor-
bidity in individuals with substance use disorder (SUD) is linked to 
more severe psychopathology, increased engagement in risky be-
haviors, greater psychosocial impairment, and a higher likelihood 
of involvement in violent and criminal activities [17]. Identifying 
distinct phenotypes responsible for schizophrenia, rather than 
those mimicking psychotic symptoms induced by substance abuse, 
remains a challenge [2,16]. The increased prevalence of substance 
use disorder (SUD) among individuals with schizophrenia is not 

entirely understood, but it has been suggested that patients may 
use substances to cope with anxiety and cognitive decline [18]. 
This pattern of acute self-medication is believed to help alleviate 
symptoms associated with impaired functioning of the mesocorti-
colimbic reward system, a condition referred to as “Reward Defi-
ciency Syndrome” (RDS) by Blum and colleagues [19]. 

Earlier work by van Ree and de Wied [20] presents an intrigu-
ing hypothesis about the role of gamma-endorphin in schizophre-
nia, proposing that shared, yet distinct pathways may explain the 
overlap between schizophrenia and substance use disorder (SUD). 
Genetic data strongly suggests that schizophrenia vulnerability is 
separate from substance use disorder (SUD) vulnerability. In fact, 
both conditions may coexist with independent, distinct polygenic 
polymorphisms. However, the dopamine system has been impli-
cated in the development of both SUD and schizophrenia.

Hypothesis
A deficiency in gamma-type endorphins may contribute to 

sustained dopaminergic hyperactivity, which in turn exacerbates 
symptoms such as hallucinations observed in schizophrenia [20]. 
We propose that alcohol-seeking behavior in individuals with 
schizophrenia and substance use disorder (SUD) may serve, in 
part, as a physiological self-healing mechanism. This process could 
be linked to the ability of alcohol to increase gamma-endorphin 
levels, which are known to alleviate hallucinations [20] (Figure 1).

The hypothesis proposes that the DRD2 gene Taq1 A2 allele may 
be linked to a subtype of non-SUD individuals with schizophrenia 
could serve as a protective factor against addiction to alcohol or 
other substances [21]. Individuals with schizophrenia who develop 
substance use disorder (SUD) may carry the DRD2 Taq1 A1 allele 
and/or other polymorphisms associated with reward deficiency 
syndrome (RDS), leading to hypodopaminergic reward functioning.

Reward Deficiency Syndrome (RDS) and Genetic Vulnerability
Reward Deficiency Syndrome (RDS) was first described in 1996 

by Blum’s laboratory to characterize behaviors stemming from a 
common DRD2 gene polymorphism [22,23]. These behaviors in-
clude impulsivity, compulsivity, and addiction-related traits [19]. 
The DRD2 gene, often referred to as the “reward gene,” has been 
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Figure 1: Dopamine and Opioid Peptide Interaction in Schizophrenia and Alcoholism.
Left Side: Carrying the DRD2 A1 allele increases the "wanting" of alcohol, and in individuals with low gamma endorphin (DTGE) levels, 

this may heighten the risk of psychosis, leading to increased self-medication through alcohol use.

linked to pleasure and is implicated in several neuropsychiatric 
and addictive disorders [24]. The Taq1 A1 allele, in particular, has 
been extensively studied and linked to antisocial personality disor-
der [25], increased novelty-seeking behavior [27], and associated 
impulsive traits [28].

The mesocorticolimbic dopamine pathway, critical for mediat-
ing addiction reinforcement, has been implicated in various psy-
chiatric disorders and addictions [29-32]. Drug-seeking behavior 
[31,32], a hallmark of RDS, arises when genetic variations disrupt 
the mesocorticolimbic dopamine reward system [19]. This dys-
function, known as the breakdown of the reward cascade [33-41], 

Citation: Kenneth Blum., et al. “Theorizing The Role of Gama Type Endorphins in Schizophrenia and Alcoholism: Promoting Genetic Testing and Attempts 
at Inducing “Dopamine Homeostasis”". Acta Scientific Neurology 8.4 (2025): 28-40. 



32

Theorizing The Role of Gama Type Endorphins in Schizophrenia and Alcoholism: Promoting Genetic Testing and Attempts at Inducing 
“Dopamine Homeostasis”

results from a combination of genetic and environmental factors 
[42] and predisposes individuals to maladaptive behaviors. Psy-
choactive substances, including alcohol, as well as natural rein-
forcers like sex, food, gambling, and aggression, stimulate dopa-
mine release in the brain [43-56], alleviating abnormal cravings 
[46] and enhancing feelings of well-being [57]. A deficiency in D2 
receptor density predisposes individuals to a spectrum of addic-
tive, impulsive, and compulsive behaviors [58-60]. Although other 
neuromodulators such as glutamate, GABA [61], serotonin [62], 
and enkephalin [63] contribute to the rewarding and stimulating 
effects of addictive substances, dopamine remains a central role in 
initiating drug use and relapse after periods of abstinence [63,64-
67]. 

The initial discovery of a positive association between the Taq1 
A1 allele of the DRD2 gene and severe alcoholism [24] has spurred 
numerous studies with both supporting [26,28,30,33,57,65,67-91] 
and opposing findings [92-105], as highlighted in several reviews 
[25,58,78,95,105-125]. Research has demonstrated that the Taq1 
A1 allele correlates with reduced dopamine D2 receptor density in 
individuals with alcoholism [72,79,125,127]. However, studies on 
dopamine transporter (DAT) densities in alcoholics have yielded 
mixed results [128-132], potentially due to unexamined subtypes 
within these populations [84,85].

The notion of the dopamine D2 receptor gene as a specific 
target for alcohol was refuted by Blum., et al. [24], who instead 
proposed that the gene functions as a nonspecific “reward” gene 
[133]. Additionally, the DRD2 Taq1 A1 allele has been linked to in-
creased sensitivity to stress and anxiety [83,134,135], symptoms 
often associated with the sensitivity of presynaptic D2 receptors 
[110]. Sensitivity is higher in individuals with high anxiety com-
pared to those with low anxiety. Beyond substance use disorders, 
polymorphisms in the DRD2 gene have been implicated in various 
neurological and psychiatric conditions. These include borderline 
personality disorder, anxiety, panic attacks, depression, conduct 
disorder, antisocial personality disorder, and obsessive-com-
pulsive disorder, among others. A comprehensive list of related 
PubMed articles is available (see Table), categorizing these disor-
ders and their association with dopamine gene polymorphisms, 
particularly the DRD2 gene. Tabe 1 provides a summary of these 
associations, with specific data on psychiatric conditions such as 
borderline personality disorder (4 studies), anxiety (101 studies), 

panic attacks (10 studies), depression [187], conduct disorder [24], 
antisocial personality disorder (7 studies), and obsessive-compul-
sive disorder [38].

Substances and Disorders Pub Med Listed
Alcohol 460
Caffeine 32

Hallucinogens 31
Inhalants 14
Opioids 213

Sedatives/Hypnotics 11
Stimulants 266

Tobacco/Nicotine 45
Glucose

Schizophrenia 

Reward Deficiency 

Obesity                                                                                                                                               
                                                                                                     

60

826

64

129 

Table 1: Count of Pub Med listed papers that link various Sub-
stance-Related and Reward Disorders and the DRD2 gene poly-

morphisms (12-25-24).

Table 1 Count of Pub Med listed papers that link various 
Substance Related and Reward Disorders and the  DRD2  gene 
polymorphisms as of December 25th 2024.

The association of the DRD2 Taq1 A1 allele and alcoholism pres-
ents a significant challenge because the Taq1 A polymorphism is 
situated more than 10kb downstream from the coding region of 
the DRD2 gene. This location suggests that a mutation at this site 
would not directly result in structural changes to the dopamine 
receptor. It is hypothesized that the Taq1 A polymorphism is in 
linkage disequilibrium with an upstream regulatory element, a 3′ 
flanking element, or another gene that influences susceptibility to 
Reward Deficiency Syndrome (RDS) behaviors. Studies have dem-
onstrated strong linkage disequilibrium between the Taq1 A1 allele 
and other genetic markers, such as the Taq1 B allele and the SSCP 
1 allele [53,70,88,134].
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The dopamine D2 receptor has been extensively implicated in 
various behaviors related to RDS, including alcoholism, nicotine 
dependence, anxiety, memory deficits, glucose regulation, patho-
logical aggression, pathological gambling, and specific sexual be-
haviors [24,135]. Among DRD2-related polymorphisms, the Taq1 
A restriction fragment length polymorphism (RFLP) has been the 
most frequently examined. This polymorphism is associated with 
reduced D2 receptor density, a characteristic linked to addictive 
and compulsive behaviors. Neville and colleagues identified the 
“ankyrin repeat” gene (ANKK1), a kinase gene located 10kb down-
stream from the Taq1 A1 RFLP. ANKK1 contains a serine/threo-
nine kinase domain and is expressed at low levels in the whole 
spinal cord RNA and the placenta. As a protein involved in signal 
transduction pathways, ANKK1 plays a role in dopamine regula-
tion and RDS behaviors [136]. 

The Taq1 A allele of the DRD2 gene represents a single nucleo-
tide polymorphism (SNP) that leads to an amino acid substitution 
(p.Glu713Lys) within the 11th ankyrin repeat of the ANKK1 pro-
tein. Although it is not common for this substitution to disrupt the 
protein’s structural integrity, it may alter substrate-binding speci-
ficity. Changes in ANKK1 activity offer an alternative explanation 
for the previously reported associations between the DRD2 gene 
and RDS behaviors, as described in earlier studies [136].

Delineating the neural circuitry of rewards is key to decipher-
ing how positive reinforcers motivate behavior [137]. A positive 
reinforcer is defined as any event that increases the likelihood of a 
subsequent response, with drugs of abuse often regarded as more 
potent reinforcers compared to natural rewards such as food and 
sex [138-140]. The distinction between primary or natural re-
wards, such as the satisfaction of physiological drives like hunger 
and reproduction, and secondary or unnatural rewards is crucial. 
Learned unnatural rewards, such as the hedonic sensations de-
rived from substances like alcohol, gambling, or risk-taking behav-
iors, play a significant role in shaping behavior [138,141,143].

Reward Deficiency Syndrome (RDS) specifically pertains to in-
efficiencies or insensitivity in the systems regulating secondary 
rewards [19,25,28]. This condition includes the compulsive need 
to escape or avoid adverse effects resulting from cycles of alcohol 
use [144] and dependence [145-151]. These cycles are associated 
with dopamine release, which has earned dopamine the nickname 

of the “pleasure molecule” or “anti-stress molecule” due to its role 
in mediating pleasure [31,32,83,152]. The neural circuitry involved 
in positive reinforcement spans several brain regions, including the 
limbic system and the striatum [59,153-158,201]. The limbic sys-
tem is responsible for maintaining internal homeostasis, mediating 
emotional memory and learning, processing emotions, and influ-
encing motivational behaviors, including sexual activity [57,159].

Contrary to earlier assumptions, recent studies have revealed a 
significant association between the DRD2 A2 allele and the comor-
bidity of schizophrenia and SUD [17,158-161]. This finding suggests 
that if the dopamine receptor gene is not central to the substance-
seeking behavior observed in this population, alternative pathways 
contributing to hypodopaminergic reward dysfunction must be 
explored. Potential contributors include polymorphisms in genes 
coding for dopamine D1 and D3 receptors, cannabinoid receptors, 
tryptophan hydroxylase, serotonin receptors, GABA receptors, opi-
oid receptors, dopamine transporters, dopamine beta-hydroxylase, 
N-acetyltransferase, and Homer 2 proteins [3,162,175]. These ge-
netic variations are all implicated in RDS and may serve as putative 
drivers of substance-seeking behaviors in affected individuals.

Gamma type endorphins deficiency and increased dopaminer-
gic activity

Pro-opiomelanocortin (POMC) processing produces alpha, 
beta, and gamma endorphins, which are primarily located in the 
pituitary but also present in neuronal pathways of the brain. Re-
search has demonstrated that gamma endorphins possess distinct 
pharmacological properties compared to other endorphins [20]. 
Certain effects of gamma endorphins occur independently of the 
opioid peptide systems and their receptors. For example, the re-
moval of the N-terminal group from gamma endorphins eliminates 
opiate-like actions, creating a peptide called des-tyrosine-gamma-
endorphin (DTGE). DTGE exhibits antipsychotic-like properties 
in various tests. However, as DTGE does not displace haloperidol 
from its receptor binding site, it has been suggested that DTGE or 
a similar peptide might act as an endogenous substance with anti-
psychotic-like effects [176,177].

Gamma endorphins, including DTGE, act as antagonists of dopa-
mine D2 and/or D3 receptors, which are abundant in the nucleus 
accumbens (NAc), a critical region in the mesolimbic dopaminergic 
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pathway [178,179]. Endogenous gamma endorphins are thought 
to regulate dopamine activity, and a chronic deficiency of these 
peptides-a phenomenon linked to Reward Deficiency Syndrome 
(RDS)-could lead to sustained hyperdopaminergic activity, as ob-
served in schizophrenia [179]. This hypothesis, which suggests 
that psychosis in schizophrenia may result from a gamma-endor-
phin deficiency, has spurred significant research into the antipsy-
chotic effects of these peptides [180-182].

Self-healing using alcohol in people with schizophrenia with 
SUD

Alcohol abuse in individuals with schizophrenia and substance 
use disorder (SUD) may partially be explained by gamma endor-
phin dynamics. Alcohol consumption has been shown to increase 
gamma endorphin levels in the brain, which could physiologically 
reduce psychosis in these patients. Animal studies by Jackson et 
al. revealed that des-enkephalin-gamma-endorphin attenuates the 
behavioral effects of ethanol [183,184]. This finding supports the 
notion that alcohol use in a subset of individuals with schizophre-
nia and SUD may serve as a self-healing mechanism to alleviate 
psychotic symptoms.

The DRD2 gene Taq1 A2 allele may serve as a protective fac-
tor against the development of substance use disorder (SUD), 
particularly alcohol use, in individuals with schizophrenia

The DRD2 Taq1 A2 allele may protect against the development 
of substance use disorder (SUD), particularly alcohol dependence, 
in individuals with schizophrenia. It has been suggested that cer-
tain subpopulations of schizophrenic patients carry the DRD2 A2 
allele, which could reduce the risk of developing SUD, as the DRD2 
A1 allele-but not the A2 allele-has been strongly linked to SUD and 
other addictive behaviors [18,185,193]. A potential explanation 
for this protective effect involves the regulatory role of dopami-
nergic activity during embryonic development. Reduced dopami-
nergic regulation (i.e., lack of DTGE) could lead to an increase in 
dopamine release. Consequently, an overexpression of the DRD2 
A2 allele might emerge as an adaptive response to balance the hy-
peractive dopamine system. Noble., et al. [72] further noted that 
D2 receptor density is determined by DRD2 genotypes, with A1/
A1 genotypes showing the lowest receptor density, A1/A2 geno-
types exhibiting moderate reductions, and A2/A2 genotypes dem-
onstrating the highest receptor density. Thus, the overexpression 
of the DRD2 A2 allele could act as a compensatory mechanism to 
mitigate dopaminergic hyperactivity.

Similar protective genomic adaptations have been observed 
in other contexts, such as the inactive aldehyde dehydrogenase-2 
gene (ALDH2). Individuals carrying the ALDH2*2 allele exhibit min-
imal or no ALDH2 enzymatic activity, leading to a buildup of blood 
acetaldehyde even after consuming small amounts of alcohol. This 
results in the flushing response, an unpleasant physiological reac-
tion that discourages alcohol consumption [194,195]. This mecha-
nism significantly reduces the risk of alcoholism in these individu-
als. Although the polymorphic ALDH2*2 allele is present in ~50% 
of Chinese and Japanese, it is found in only 10% of those diagnosed 
with alcoholism in these populations [196,197].

Matsushita., et al. [198]. observed that individuals with the 
ALDH2*2 allele, whether alcoholics or healthy controls, were more 
likely to carry the DRD2 A1 allele than those without the ALDH*22 
allele. This finding suggests that alcoholics who carry the inactive 
ALDH2*2 alleles, despite experiencing severe adverse reactions to 
alcohol, may have an underlying genetic susceptibility toward alco-
holism. The possession of the DRD2 A1 allele might represent one 
such trait.

Additionally, Huang., et al. [199] investigated the association 
between the DRD2 gene and alcohol-metabolizing genes, such as 
alcohol dehydrogenase (ADH1B) and aldehyde dehydrogenase 
(ALDH2). Both of these genes, alongside their associated polymor-
phisms, have been implicated as protective against alcoholism and 
play a role in dopamine metabolism [200,201]. Their findings in-
dicated that the DRD2 A1 allele was significantly associated with a 
specific subtype of alcoholics characterized by anxious-depressive 
traits (ANX/DEP ALC). Furthermore, the relationship between 
the DRD2 A1 allele and ANX/DEP ALC appears to be influenced by 
both the ADH1B and ALDH2 genotypes.

Future perspectives
In the coming years, advancements in genetic research will 

likely include a greater focus on genome-wide association studies 
(GWAS), epigenome-wide association studies (EWAS), and neuro-
imaging techniques to further illuminate the intricate relationship 
between substance use disorder (SUD) and other psychiatric con-
ditions. While significant research has explored the role of opioid 
peptides in neurons throughout the nervous system (tel-di-mes-
rhombencephalon and the spinal cord) [202], not much has been 
found about their relationship with SUD. The most recent study on 
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gamma-endorphins and schizophrenia dates back to 2002 [203], 
despite the availability of 812 PubMed articles on gamma-endor-
phins [3,9,13]. As early as 1982, it was discovered that des-1-ty-
rosine-gamma-endorphin (DTGE) produced behavioral effects in 
rodents similar to those of drugs acting on the central nervous sys-
tem. These effects were attributed to DTGE’s influence on tyrosine 
hydroxylation in striatal synaptosomes, suggesting its role in do-
pamine biosynthesis and its potential antipsychotic effects [204].

Interestingly, while DTGE does not exhibit direct in-vitro activ-
ity at dopaminergic receptors, it inhibits [3H] spiperone binding 
in vivo in various brain regions [2-17]. This effect is comparable 
to that of beta-endorphin [6-17], now recognized as a major DTGE 
metabolite [205]. Moreover, localized administration of [Des-
Tyr1]-gamma-endorphin in regions such as the nucleus accum-
bens (NAc) or neostriatum replicates the effects of antipsychotics, 
potentially through adrenocorticotropic hormone (ACTH) and do-
paminergic mechanisms [206].

Patients with schizophrenia exhibit behavioral supersensitivity 
to dopamine-like drugs such as amphetamine and methylpheni-
date. This phenomenon is supported by evidence of increased do-
pamine release, a slight rise in dopamine D2 receptors, and an el-
evation in dopamine D2High receptors [207]. According to Seeman 
[207], the increase in D2High receptors in schizophrenia parallels 
findings in various animal models of psychosis. Factors contribut-
ing to this supersensitivity may include alterations in D2 receptor 
phosphorylation, desensitization, attachment of Arestin, receptor 
internalization, de-phosphorylation rates, receptor dimer forma-
tion, and GTP regulation by GTPases. Clinically, haloperidol has 
been shown to reduce psychostimulant-induced D2High receptor 
elevation, a finding that holds significance for treating schizophre-
nia and SUD. Blum et al. proposed a neurobiological and genetic 
mechanism involving DRD2 supersensitivity in SUD [208].

Research on dopaminergic polymorphisms in psychiatric dis-
orders and substance use disorder (SUD) has been a significant 
focus since Blum et al. first identified an association between the 
DRD2 gene and severe alcoholism [24,209,223]. As we enter the 
genomic era, more profound insights into the role of genetic poly-
morphisms in schizophrenia and SUD are expected. Research into 
the effects of antipsychotics on brain function will also expand sig-
nificantly [224]. However, one area that remains underexplored is 

the genetic regulation of gamma-endorphins and their association 
with schizophrenia susceptibility. Future research should priori-
tize genotyping polymorphisms in gamma-endorphin regulatory 
genes, including those involved in synthesis, synaptic release, and 
catabolism, through large-scale case-control studies to uncover 
their potential role in schizophrenia vulnerability.

Summary
Both Substance Use Disorder (SUD) and schizophrenia are mul-

tifactorial conditions influenced by the dopamine system. Studies 
have shown that the DRD2 A1 allele increases the genetic risk for 
SUD, particularly alcoholism, while carriers of the DRD2 A2 allele 
do not face the same risk. One hypothesis suggests that alcohol-
seeking behavior in individuals with schizophrenia carrying the 
Taq1 A1 allele may result from a deficiency in gamma-type endor-
phins. This deficiency could contribute to the hyperdopaminergic 
activity seen in these individuals. It is proposed that alcohol use 
in individuals with schizophrenia could serve as a compensatory 
mechanism, enhancing gamma-type endorphin activity and there-
by decreasing dopamine activity in the nucleus accumbens (NAc).

Additionally, we propose that the DRD2 Taq1 A2 allele could be 
overexpressed as a compensatory mechanism to counteract do-
paminergic hyperactivity due to the absence of DTGE during fetal 
development. This allele may also be linked to a specific subtype 
of non-SUD individuals with schizophrenia, potentially acting as a 
protective factor against addiction to alcohol or other substances. 
These hypotheses suggest that vulnerabilities to substance use dis-
order (SUD) and schizophrenia within the dopamine system may 
arise from two separate sets of genetic associations, indicating the 
need for further research within distinct subgroups of individuals 
with schizophrenia.

We advocate research that incorporates neuroimaging, genome-
wide association studies (GWAS), and epigenetic approaches to ex-
plore the relationship between neurogenetics and systems biology. 
Such studies could provide valuable insights into the role of dopa-
mine in psychiatric disorders and substance use disorders (SUD).
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