

Volume 7 Issue 7 July 2024

Amyloid Precursor Protein Processing and Alzheimer's Disease

Kunal Joon*

University of NIIMS, Uttar Pradesh, India

*Corresponding Author: Kunal Joon, University of NIIMS, Uttar Pradesh, India.

Received: May 24, 2024 Published: June 01, 2024 © All rights are reserved by Kunal Joon.

Abstract

Alzheimer's disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β -amyloid peptide (A β) within the brain along with hyperphosphorylated and cleaved forms. Accumulation of cerebral amyloid-beta peptide (Abeta) is essential for developing synaptic and cognitive deficits in Alzheimer's disease.

Keywords: Neurodegeneration; Dementia; BACE1; α -Secretase; γ -Secretase; Aging

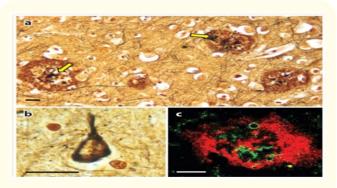
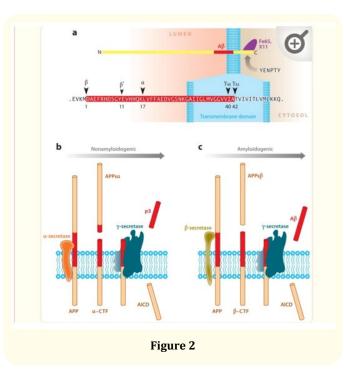
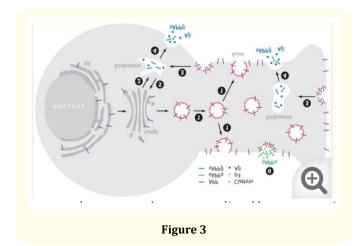



Figure 1: Dementia patients reports are taken in the given figures.

Pathology of Alzheimer's disease. (a, b) Brain cut sections of a patient with dementia [1] are stained with silver dye, revealed neuritic plaques observed in panel a andneurofibrillary tangle observed in panel b. The plaques in panel a consist of an amorphous reddish protein (A β) with dystrophic neurites (yellow arrows, dark black [2] material). (c) An A β plaque observed with an anti-A β antibody (red) showing infiltrating microglia stained with IBA1 antibody (green) [3].



Citation: Kunal Joon. "Amyloid Precursor Protein Processing and Alzheimer's Disease". Acta Scientific Neurology 7.7 (2024): 01-02.

(a) The APP family of proteins are large, biologically active, N-terminal ectodomains and a shorter C-terminus that consist of a crucial Tyrosine–Glutamic Acid-Asparagine-Proline-Threonine-Tyrosine (YENPTY) protein-sorting domain to the adaptor proteins X11 and Fe65 bound. The A β peptide started within the [4] ectodomain and continued into the transmembrane region (red). (b) Nonamyloidogenic processing of APP involved α -secretase followed by γ [5]-secretase is shown. (c) Amyloidogenic processing of APP involving BACE1 followed by γ -secretase is shown. Both processes generate soluble ectodomains (sAPP α and sAPP β) and identical intracellular C-terminal fragments (AICD) [6].

Figure 3

APP trafficking in neurons. Newly synthesize APP (purple) is transported from the Golgi down the axon (1) or into a cell body endosomal compartment (2). After inserting into the cell surface, some APP is cleaved by α -secretase (6) generated the sAPP α fragment, which diffused away (green), and some is reinternalize into endosomes (3), where A β is [7] generates (blue). Following proteolysis, the endosome recycles to the cell surface (4), releasing A β (blue) and sAPP β . Transport from endosomes to the Golgi prior to APP cleavage can also occur, mediated by retromers (5).

Discussion

In this research we discussed about the amylotropic protein synthesis and histological study and pathological study and also serum studies and neurological study and neurochemical studies

Conclusion

Alzheimer's disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β -amyloid peptide (A β) within the brain along with hyperphosphorylated and cleaved forms.

Bibliography

- A Alzheimer., et al. "An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde"". Clinical Anatomy 8.6 (1995): 429-431.
- Olav M Andersen., et al. "Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein". Proceedings of the National Academy of Sciences of the United States of America 102.38 (2005): 13461-13466.
- 3. K Ando., *et al.* "Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid". *Journal of Biological Chemistry* 276.43 (2001): 40353-40361.
- Masashi Asai., et al. "Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase". Biochemical and Biophysical Research Communications 301.1 (2003): 231-235.
- James Ashley., *et al.* "Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint". *Journal of Neuroscience* 25.25 (2005): 5943-5955.
- 6. Dimitrios Avramopoulos. "Genetics of Alzheimer's disease: recent advances". *Genome Medicine* 1.3 (2009): 34.
- D M Barten., *et al.* "Dynamics of {beta}-amyloid reductions in brain, cerebrospinal fluid, and plasma of {beta}-amyloid precursor protein transgenic mice treated with a {gamma}secretase inhibitor". *Journal of Pharmacology and Experimental Therapeutics* 312.2 (2005): 635-643.

02