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Abstract
A normative quantitative electroencephalogram (qEEG) database is vital for assessing brain disorders. However, constructing 

qEEG normative databases for research and clinical applications has posed challenges over the past 61 years, due to defining the 
‘normal’ population and lack of standardized procedures for EEG data. This study aims to build a new BrainView qEEG discriminant 
database that meets strict normative data criteria derived from the field’s challenges and milestones, using a method similar to 
that used to construct a normative database. It follows key procedures: data collection and preprocessing, feature extraction and 
selection, as well as classification and validation. BrainView comprises data for 28,283 subjects (7,798 healthy subjects) for eyes-
open and eyes-closed conditions, spanning ages 4 to 85 years. Developed using patient data, BrainView’s discriminant function 
identifies a patient’s likelihood of belonging to a specific clinical group, aiding in precise diagnosis. The goal is to establish BrainView 
as a gold standard for diagnosis and prognosis of various brain disorders, enabling standardized use in clinical practice.
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Abbreviations

qEEG: Quantitative Electroencephalogram; EEG: 
Electroencephalogram; IFCN: International Federation of Clinical 
Neurophysiology; mTBI: Mild Traumatic Brain Injury; BSS: 
Blind Source Separation; CSD: Current Source Density; FFT: Fast 
Fourier Transform; ERP: Event Related Potential; CT: Computed 
Tomography; MRI: Magnetic Resonance Imaging; MCI: Mild 
Cognitive Impairment; AD: Alzheimer’s Disease; MS: Multiple 
Sclerosis; ADHD: Attention Deficit Hyperactivity Disorder; ASD: 
Autism Spectrum Disorder; PTSD: Post-Traumatic Stress Disorder; 
SVMs: Support Vector Machines; LDA: Linear Discriminant Analysis; 
KNNs: k-Nearest Neighbors; PSD: Power Spectral Density; MMN: 
Mismatch Negativity; MKL: Multiple Kernel Learning; RF: Random 
Forest; GC: Granger Causality; PECs: Power Envelope Correlations; 
FgMDM: Fisher Geodesic Minimum Distance to the Mean; CT: 

Classification Trees; ANN: Artificial Neural Networks; HFD: 
Higuchi’s Fractal Dimension; MLP: Multilayer Back-Propagation 
Network; SampEn: Sample Entropy; PCA: Principal Component 
Analysis; LMT: Logistic Model Trees; FSL: Fuzzy Synchronization 
Likelihood; KFD: Katz’s Fractal Dimension; m-ACO: Modified Ant 
Colony Optimization Method; AUC: Lower Area Under the Curve; 
EMCI: Early Mild Cognitive Impairment

Introduction

The history of normative database traces back to 1929 
when Hans Berger conducted the inaugural quantitative 
electroencephalogram (qEEG) study, marking the commencement 
of human EEG measurements [1]. Utilizing the Fourier transform, 
he spectrally analyzed EEG data and compared various measures 
to a normative database. During the 1950s, Ross Adey, associated 
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with the UCLA Brain Research Institute, developed the first qEEG 
reference normative database between 1961 and 1974 [2]. Initially 
intended for astronaut selection in NASA space travel, this database 
relied on statistical tests such as means and standard deviations, 
checks for normal/Gaussian distribution, complex demodulation, 
Fourier spectral analysis, and other essential statistical parameters. 
The establishment of statistical standards for normative databases 
and the first peer-reviewed publication occurred in 1973, led by 
Swedish neurologists Dr. Milos Matousek and Dr. Ingemar Petersen 
[2]. Surveying 401 subjects (Female: 54.4%) aged 2 months to 22 
years, the Swedish pair set stringent criteria, including age-specific 
sample sizes and standardized inclusion/exclusion criteria. Their 
work laid the foundation for parametric statistical tests and 
peer-reviewed publications. E. Roy John and colleagues, in 1975, 
validated the Swedish database’s reliability by independently 
cross-validating it with EEG data from Harlem black children aged 
9 to 11, who performed at grade level and lacked neurological 
disorders [2]. Recognizing the need for standardization, E. Roy 
John and colleagues formed a consortium of universities between 
1982 and 1988 [2]. In 1994, the American EEG Association adopted 
statistical standards to ensure replicability, cross-validation, 
reliability, and Gaussian approximation for any normative 
qEEG database [2]. Subsequently, between 1993 and 2001, the 
establishment of the four Daubert factors set scientific standards 
for the admissibility of EEG findings in federal courts [2,3]. These 
standards paved the way for the evolution of qEEG and EEG norms, 
as currently endorsed by the International Federation of Clinical 
Neurophysiology (IFCN) [2].

Normative reference databases play a crucial role in 
contemporary clinical science and patient assessment. These 
databases adhere to common methodological, statistical, and 
scientific standards. A qEEG normative database comprises metrics 
derived from EEG data collected from a sufficiently large and diverse 
population, ensuring representation of the general populace. This 
facilitates the comparison of an individual’s metrics to the qEEG 
database, aiming to identify any non-typical electrophysiological 
markers relative to the population, with potential clinical 
relevance in specific disorders when professionally interpreted. 
The term “normative” in this context pertains to the analytical 
and statistical procedures used in database creation to ensure 
valid comparisons. Thatcher., et al. outlines the crucial steps, 
including careful inclusion criteria, representative sampling, and 

balancing participant recruitment based on demographic variables 
like gender, age, and socioeconomic status [4]. Additionally, 
amplifier matching corrects individual qEEG metrics based on 
EEG amplifier frequency characteristics, making them comparable 
to the database. To achieve a Gaussian distribution characterized 
by mean and standard deviation, normative databases perform 
analytical transformations on qEEG metrics. This step ensures high 
sensitivity and test-retest reliability.

The construction of a qEEG database involves gathering EEG data 
during active tasks or resting states. Active tasks involve recording 
brain activity during perceptual, motor, or cognitive tasks, while 
resting state recordings capture brain activity in an awake, relaxed 
state with closed (EC) or open (EO) eyes. These recordings offer 
simplicity and replicability across laboratories worldwide. Several 
normative databases, such as the Neurometrics, Sterman-Kaiser 
Imaging Laboratory (SKIL), and NeuroGuide Lifespan databases, 
have been developed. These are ‘normality’ databases constituting 
data from healthy or normal individuals [2,4]. For example, the 
Neurometrics database, FDA-cleared in 1998, includes metrics 
measured in 782 normal individuals, with 356 aged between 
6-16 years and 426 aged from 16 to 90 [2]. Similarly, the SKIL 
normative database, developed by Sterman and Kaiser, comprises 
healthy participants aged 18-55, made up of students, laboratory 
personnel, community volunteers, and United States Air Force 
personnel [2]. The commercially available NeuroGuide Lifespan 
database, renowned for its extensive sample size, covers 727 
healthy individuals aged two months to 82.6 years, representing 
multi-ethnics, with 71.4% white, 24.2% black, and 3.2% oriental 
individuals [4,5]. Various countries, including South Korea, Taiwan, 
the Netherlands, and Cuba, have developed their own normative 
databases to assess a broad spectrum of clinical disorders [5]. 
It’s crucial to note that while EEG normative databases are 
valuable tools, they are not standalone diagnostic tools. Accurate 
interpretation by experienced professionals of EEG results 
requires additional patient information, considering symptoms, 
medications, and age-related changes for a comprehensive 
diagnosis, prognosis, or treatment. 

The evaluation of brain function continues to be a persistent 
challenge in the healthcare field, especially considering that 
brain disorders impact about one in three individuals [6]. This 
emphasizes the critical necessity for precise tools capable of 
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distinguishing between healthy and impaired brain function. 
It is a pressing, unmet medical need for a swift, objective, and 
physiological measure of brain function within the clinical arena 
[6]. Essentially, what is required is a vital sign for brain function. 
Existing potential measures for brain vital signs are predominantly 
utilized in research settings [7]. One such measure is Event-
Related Potentials (ERPs), which are assessed through EEG [8]. 
ERPs, a subset of cognitive evoked potentials (EPs), are well-
established in the research literature as a physiological evaluation 
of brain function. However, their integration into clinical practice 
is still limited, highlighting the need for further exploration and 
development in this area.

ERPs, minute voltages generated in the brain in response to 
specific stimulus events like images, auditory tones, or spoken 
words, have been extensively studied as indicators of brain 
function [8]. Non-invasive recording of these signals is made 
possible through EEG technology and scalp electrodes. Dating 
back to the 1930s, ERPs have undergone comprehensive scrutiny 
in scientific literature to assess brain function across a spectrum 
of processes, ranging from basic sensory to higher-level cognitive 
functions [9]. With over 150,000 peer-reviewed publications on 
ERPs and a robust scientific foundation dating back to 1934, there 
is substantial potential to integrate this ERP/EEG technology into 
clinical practice [9].

The extensive body of published scientific studies has not only 
paved the way for the translation of ERPs into a brain vital sign 
framework but has also laid the foundation for the innovative 
BrainView ERP platform. Meticulously designed by Medeia Inc., 
the BrainView platform aims to streamline the rapid recording and 
analysis of ERP responses using portable EEG devices, delivering 
automated, standardized, and clinically intuitive results. This 
pioneering platform has achieved FDA 510K clearance (K192753, 
K212684) and is fortified by international patents and trademarks. 
The development of BrainView commenced with the meticulous 
selection of three highly validated ERPs, each intricately linked to 
distinct cognitive processes: the N100 (associated with auditory 
sensation), P300 (related to basic attention), and N400 (linked 
to cognitive processing) [10,11]. These ERPs underwent rigorous 
validation across large cohorts of healthy individuals, with data 
on brain vital signs collected from thousands. The rapid testing 
process facilitated the swift establishment of normative ranges, 

ensuring reliability and validity, consistently aligning with existing 
research [11].

The N100, P300, and N400 ERPs are specifically triggered by 
standard video, auditory tone, and spoken word pair stimuli. 
These stimuli are designed to provoke sensory, attentional, and 
cognitive responses to unexpected events. The speed of these 
brain responses, measured in milliseconds, and their magnitude, 
measured in microvolts, are quantified and presented in a readily 
understandable standard report immediately following the 
scan. Importantly, these three ERP components can be elicited 
across different sensory modalities, throughout the lifespan, 
and repeatedly within individuals to monitor changes over time 
[10,12]. In the context of healthy aging and routine monitoring 
of cognitive function, these brain vital signs exhibit heightened 
sensitivity to subtle cognitive-process alterations that may escape 
detection through behavior-based tests [12].

The N100 manifests at around 100ms after the presentation 
of a tone, signifying the brain’s acknowledgment that information 
has entered its auditory processing systems [13]. The P300, 
occurring at approximately 300ms after a tone, reflects an early 
stage of attentional processing—specifically, the discrimination 
between different events, such as discerning a deviant or 
unexpected sound or tone from a standard one [14]. The N400, 
peaking at approximately 400ms after the presentation of a word, 
comes into play when unexpected or incongruent word pairs are 
detected, serving as an index of one of the most advanced cognitive 
functions: language processing [15]. This cognitive response of the 
highest order, the N400, has been successfully validated through 
advanced neuroimaging techniques, involving comparisons with 
the underlying functional neuroanatomy [16]. The integration of 
these ERPs into BrainView provides a comprehensive and nuanced 
understanding of brain function, showcasing the platform’s 
potential to contribute significantly to cognitive assessment and 
monitoring.

Medeia Inc., creator of BrainView, has been at the forefront 
of developing clinical ERP applications, emphasizing rapid and 
automated approaches for individual ERP recording. The aim of 
the study is to construct and validate a new candidate BrainView 
qEEG discriminant database, using patient data to create clinical 
profiles. Created based on the EEG norms, the BrainView 
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discriminant database incorporates a discriminant function for 
specific and definitive patient assessment and placement. The 
criteria checklist of endorsed EEG norms, providing practical 
guidance for understanding and evaluating qEEG normative 
database construction and discriminant databases for various 
brain disorders, will be discussed.

Materials and Methods

Discriminant databases serve the specific purpose of 
distinguishing between different groups or conditions and are 
often applied in clinical settings to differentiate between healthy 
and pathological states. The distinctions between normative and 
discriminant databases encompass their intended purpose, the 
subjects involved, and their utilization. 

A normative database is designed to establish a baseline or 
‘normal’ reference for a specific population, typically utilizing 
data from healthy individuals without known neurological or 
psychological disorders. Its purpose is to provide a standard for 
comparison and assessment of individual cases, determining how 
measurements deviate from the established norm.

In contrast, a discriminant or disease-specific database is 
focused on a particular disorder or condition. It involves collecting 
data from individuals diagnosed with a specific disorder, allowing 
for the identification of patterns or abnormalities associated with 
the targeted condition.

Despite these divergences in purpose, subjects, and use, 
both normative and discriminant databases follow a similar 
construction method, consisting of the same procedures. This 
method encompasses key procedures such as data collection 
and preprocessing, feature extraction and selection, as well as 
classification and validation.

In constructing and validating the new BrainView qEEG 
database, the following procedures were followed.

Subject and variable selection

Patient data acquisition occurred between 2018 and 2023 across 
multiple neurology offices. Resting EEG samples, obtained with 
eyes closed or open and free from artifacts, underwent analysis. 
Fast-Fourier Transformation (FFT) and direct Fourier Transform 
(Complex Demodulation) techniques were applied to extract at 

the spectral power resolution of 0.5 Hz the five primary frequency 
bands [Delta (0–4Hz), Theta (4–8Hz), Alpha (8–13Hz), Beta (low: 
13-21; high: 21-30 Hz), and Gamma (30-45Hz)] and the standard 
ratios of frequency bands. Statistical analyses encompassed 
univariate, bivariate, and multivariate methods, presented in 
tables and topographical color maps for 19 monopolar and all 171 
possible combinations of the 19 electrode bipolar derivations of 
the EEG.

Delta Waves: This type of brain wave has the highest amplitude 
and occurs at the slowest frequency. It is primarily observed during 
deep sleep. 

Theta Waves: These brain waves are present when awake or in 
a light phase of sleep, such as when falling asleep. When occurring 
while awake, theta waves are associated with intense relaxation 
and are believed to play a crucial role in information processing 
and memory formation. 

Alpha Waves: Produced when awake but in a very relaxed state, 
typically experienced when first waking up and not concentrating 
on anything specific. 

Beta Waves: These brain waves are generated when the brain 
is fully awake, alert, and focused. They also occur during states of 
excitement or arousal. 

Gamma Waves: Waves with the lowest amplitude but the 
fastest frequency among brain waves. They are generated when an 
individual is trying to solve a problem or intensely concentrating 
on a specific task, such as during learning.

Inclusion/exclusion criteria, demographics and gender

For subjects aged 4 to 18 years, parents completed a neurological 
history questionnaire for them, and psychometric evaluations 
were conducted. Adults (≥ 18 years) also completed a neurological 
questionnaire, and those deemed unhealthy were excluded based on 
questionnaire responses and/or physician comments. Physicians 
have access to the following questionnaires: GAD-7 (Anxiety 
Severity), DSM-5 Level 1 (Cross-Cutting Symptom Measures), 
PHQ-9 (Depression), PCL-C (PTSD Severity), GCS (Glasgow Coma 
Scale), and general neurological questionnaires. Inclusion required 
at least one questionnaire score below moderate and physician-
verified health in that the patient was deemed healthy. Any patient 
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records or previously known medical records with questionnaire 
score of ‘moderate’ or ‘severe’ were excluded from the BrainView 
qEEG database, regardless of other information.

Demographic characteristics

It is crucial that the demographic mixture of males and females, 
various ethnic groups, and socioeconomic statuses be reasonably 
representative of the expected North American clientele. This 
diversity was derived from a large pool of subjects obtained 
from eight geographically dispersed sites, reflecting the North 
American demographics and addressing a wide range of ethnic 
and socioeconomic statuses found in the de-identified patient data 
before review. 

Time of day and other miscellaneous factors

Due to numerous uncontrollable factors or confounders 
influencing the EEG frequency spectrum, statistical randomization 
was employed to address these variables. This approach 
acknowledges the impracticality of individually controlling each 
confounder, as doing so would be expensive, require a large sample 
size, and necessitate a precise match between the manner in which 
a patient’s EEG was obtained and that in the database.

Client-based brainview qEEG database

Each client in the BrainView qEEG database completed a DSM-
based questionnaire. Regression analysis was utilized to remove 
any psychopathology-related variance from the EEG data. This 
process ensures that the variance in the EEG of ‘healthy’ subjects, 
which is explained by the variance in the questionnaire, is removed 
to create a ‘psychopathology-free’ qEEG normative database or 
discriminant databases for various brain disorders.

Utilizing a client-based normative or discriminant database has 
its own set of advantages. Clients may harbor expectations distinct 
from those of ‘healthy’ subjects concerning EEG recordings. Given 
that it is common for clients to experience worry or stress during 
EEG sessions, research has demonstrated a significant correlation 
between anxiety levels and the power distribution of the frequency 
band spectrum [17,18]. In essence, profound differences may exist 
in the resting state EEG recordings of clients compared to ‘healthy’ 
subjects, differences unrelated to the psychological complaints of 
the clients. Therefore, comparing a client’s EEG with a normative 
database comprising ‘healthy’ subjects without accounting for the 

aforementioned variations might lead to incorrect conclusions and 
render the treatment ineffective. 

Discriminant databases for various brain disorders

Within discriminant databases, using discriminant functions 
with qEEG faces the challenge of determining the most appropriate 
functions tied to relevant features. This involves addressing three 
key issues [19]. First, there are numerous potential analytic 
approaches and data features, ranging from time-based measures 
to frequency-domain analytics and complex time-frequency 
hybrid features. Second, discrimination functions must be specific 
enough to accurately detect the targeted state, minimizing false 
identifications. For example, in mild traumatic brain injury (mTBI) 
detection, features and functions should distinguish not only mTBI 
from no trauma but also trauma from states like exhaustion or 
cognitive fatigue. Lastly, effective discrimination often requires ad 
hoc adjustments or comparisons against a known baseline due to 
individual and situational variability. Access to a ‘ground truth’ or 
‘baseline 0’ state is crucial, though it may be challenging in real-
world scenarios where patient access occurs post-trauma [19]. 

The term ‘discriminant functions’ encompasses a range of 
analysis methods where a specific model is employed to determine 
whether a set of data belongs to a particular group. These models 
use predefined rules to classify different classes based on qEEG 
variables or features. Developing machine learning models requires 
domain knowledge to decide which qEEG features are most 
relevant for detecting and classifying conditions [19]. Empowered 
by Medeia Inc.’s BrainView, machine learning, a subset of artificial 
intelligence, involves computer algorithms that leverage statistical 
methods and data to enhance performance automatically through 
experience.

Machine learning models or classifiers are trained on extracted 
features to identify patterns associated with distinct brain states 
or disorders. These algorithms learn to map input qEEG features 
to specific classes (healthy or diseased) based on training data. 
Rule-based machine learning involves identifying a set of rules 
representing the algorithm’s learned knowledge, relying on the 
user’s domain knowledge to determine essential input features 
for group discrimination. Feature selection is crucial not only 
for disease classification but also for eliminating outliers. In the 
upcoming discussion (see Discussion), exploration of discriminant 
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function-based features and classifiers tailored for the detection of 
various brain disorders will illuminate the process of constructing 
discriminant databases.

Digital electroencephalographic recording procedures

21-lead EEGs were recorded and digitized at 1000 Hz and 500 
Hz using the International 10/20 system of electrode placement, 
with reference linked ear lobes and a single lead EEG configuration. 
This standardized system allows for consistent and comparable 
EEG recordings across different individuals and settings. 

Impedance for each electrode was maintained at less than 5k 
ohms to 40k ohms for all subjects. Amplifiers were calibrated 
using sine wave calibration signals and standardized procedures. A 
permanent recording was made before and after each test session. 
The amplifier frequency response was approximately 3 db down at 
both 0.5 Hz and 40 Hz. 

Artificial removal and quality control procedures

EEG recordings were screened for sharp waves, epileptogenic 
events, and artifacts (e.g., ‘drowsiness’]. EEG recording lengths 
varied from 300 seconds to 40 minutes. Artifact removal was as 
follows: 1 to 2 seconds of ‘clean’ or ‘artifact-free’ EEG recordings 
were selected as a template. This template was then used to 
compute matching amplitudes of EEG. The criteria were flexible, 
allowing for equal amplitudes or amplitudes that are 1.25 or 1.5 
times larger. The final edited ‘clean’ or ‘artifact-free’ EEG recording 
varied in length from 120 seconds to 600 seconds.

Standardized de-artifacting procedures

Artifacts in EEG refer to unwanted signals or interference that 
are not directly related to neural activity. The artifacts found in 
resting-state EEG recordings include eye blinks, eye movements, 
movement of the head or body, line noise artifacts, and tonic or 
phasic muscle contractions. These artifacts can distort the EEG 
signal and make it challenging to interpret the underlying neural 
activity accurately. To minimize the impact of these artifacts on 
EEG recordings during data analysis, an automatic de-artifacting 
procedure was employed. 

Manual de-artifaction is subjective, involving marking segments 
containing artifacts. The drawback is it can result in suboptimal 

inter- and intra-rater reliability. Automated de-artifacting methods 
can be either “semiautomatic” or “fully automatic,” involving 
artifact “correction” or artifact “rejection” methods. Artifact 
rejection methods remove segments of EEG identified as being 
contaminated by artifacts, while artifact correction methods apply 
techniques that remove artifacts without removing the underlying 
EEG signal. One example of an artifact correction method is the 
use of “blind source separation (BSS)” that identifies different 
independent sources of variance in the EEG. The benefit of fully 
automatic de-artifacting methods is that they eliminate inter- and 
intra-rater variability and guarantee that each EEG will be de-
artifacted using the exact same set of criteria.

Re-montage to the surface Laplacian and average reference

The “average reference method” involved summing the voltages 
across all 19 leads for each time point and dividing this value by 
the microvolt digital value from each lead at each time point. The 
reference-free surface “Laplacian or current source density (CSD)” 
was computed using the spherical harmonic Fourier expansion of 
the EEG scalp potentials to estimate the CSD directed at right angles 
to the surface of the scalp in the vicinity of each scalp location [20]. 
The Laplacian is reference-free in that it is only dependent upon 
the electrical potential gradients surrounding each electrode. Both 
methods used a digital EEG time series that was then submitted 
to the same age groupings, power spectral analysis, and Gaussian 
evaluations as the Linked Ears method.

FFT linked ears, average reference and Laplacian

The sampling rate was 500 samples per second; the EEG 
recordings were high-pass filtered at 40 Hz, and the FFT Power 
Spectral Density was computed as follows. A Hanning window was 
used for each four-second epoch, resulting in a 0.5 Hz resolution. 
The 75% sliding window method of Kaiser and Sterman was used 
to compute the FFT database for linked ears, average reference, 
and Laplacian estimator of CSD in both the eyes closed and 
eyes open conditions [21]. Successive four-second epochs were 
advanced by 500-millisecond steps to minimize the effects of the 
FFT windowing procedure. The FFT Power Spectral Density, with 
512 points and 2.5-second epochs, thus produced a total of six 
different 80 frequency values in µV2/Hz from 0 to 40 Hz in 0.5 Hz 
increments. These values were then used to compute means and 
standard deviations for different age groups, as described.
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Amplifier and digital matching

As the frequency characteristics of all amplifiers differ (<3 
Hz and >20 Hz), and there are no universal standards that all 
EEG amplifier manufacturers must abide by, their filter and 
gain characteristics must be equilibrated to match those of the 
normative EEG amplifiers and those of various brain disorders’ 
EEG. To achieve this, we injected microvolt sine waves from 0 to 
40 Hz in 1 Hz steps into each amplifier system. The ratio of the 
frequency response characteristics between the normative EEG 
amplifiers and the amplifier characteristics used for EEG recording 
in a patient were then used as equilibration factors. A note of 
caution: It may not be possible to equilibrate some frequencies 
that are severely attenuated by the amplifier filters. For example, 
ratios greater than 5.0 will significantly amplify the noise of the 
amplifiers where little or no EEG signal is present, rendering the 
Z-scores invalid.

Step-by-step data processing

Below is a step-by-step data processing procedure for validating 
a normative EEG database or discriminant databases for various 
brain disorders and calculating sensitivity (Figure 1) [4].

•	 Patient Inclusion and Exclusion

•	 Include only artifact free EEG data recordings

•	 EEG data filtering

o Power noise filtering: 60Hz or 50Hz (4th order)

o LPF: 70Hz (4th order)

o HPF: 0.5Hz (4th order)

•	 Amplifier and Digital Matching

•	 EEG data Re-Montage: Surface Laplacian, Average Reference 
and Linked ears

•	 FFT Spectral analysis on 0.5 to 40 Hz

•	 Data Grouping

•	 Age group

•	 EEG Channel

•	 Montage Type

•	 Patient States: Eye Open (EO) or Eye Closed (EC)

•	 Frequency

•	 Gaussian Distribution Analysis

•	 Mean, SD

•	 Z-Scoring Data Samples

•	 Gaussian Validation

•	 Exclude extremes (from step 10) and Re-Computing (go to 
step 6)

Statistical foundations and performance validation

•	 Validation by Clinical Correlations: Validity concerns 
the relationship between what is being measured and the 
nature and use to which the measurement is being applied. 
Hypothesis formation and testing, as emphasized in Daubert, 
are important aspects of determining the validity of a scientific 
measure [3,4].

•	 Predictive Validity of Normative/Discriminant Databases: 
Nunally (1978) defined predictive validity as follows: ‘When 
the purpose is to use an instrument to estimate some 
important form of behavior that is external to the measuring 
instrument itself, the latter is referred to as criterion 
[predictive] validity’ [22]. For example, science ‘validates’ the 
clinical usefulness of a measure by assessing its false positive 
and false negative rates, as well as by examining statistically 
significant correlations with other clinical measures and, 
especially, with clinical outcomes.

Figure 1: An illustration of a step-by-step procedure by which 
any normative EEG database can be validated, and sensitivities 
calculated. The left side of figure is the edited and artifact clean 
and reliable digital EEG time series which may be re-referenced 

or re-montaged, which is then analyzed in either the time  
domain or the frequency domain (4).
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To prepare the patient for a brainview assessment

To perform a reliable BrainView assessment, it is essential to 
observe the following patient preparations: patients should abstain 
from consuming caffeine at least 2 hours before the assessment, 
avoid taking any new medications or supplements unless directed 
by a healthcare provider, and refrain from using alcohol, marijuana, 
or other recreational drugs at least 6 hours prior to the assessment. 
Patients with pacemakers should not undergo testing during the 
visit and are required to complete a brief neuropsychological 
questionnaire about their symptoms before testing.

During the testing, ensure the patient is comfortably seated in a 
chair while brain behavioral measurements and activity recordings 
are conducted with both eyes open and eyes closed. Electrogel will 
be applied to establish the necessary contact between the scalp and 
the EEG cap electrodes, facilitating the recording of brain waves 
(Figure 2). The test duration is approximately 25 to 35 minutes.

cloud-based reports, two reusable EEG caps, an SpO2 finger sensor, 
a headset with three-lead ECG sensors, and a response button for 
ERP auditory, visual, and motor tests (Figure 3). The BrainView 
technologies include EEG, ECG, ERP (visual, auditory, no-go), 
frequency-based analysis of EEG data, qEEG, functional EEG, brain 
3-D mapping (eLORETA Source Analysis), behavioral metrics, 
subjective neuropsychological surveys, and heart rate variability 
analysis (HRV).

Figure 2: An illustration of an EEG recording of brain waves 
and qEEG topographical maps obtained using the BrainView 

Neural Scan System containing the Brainview normative data-
base. Figure 2 depicts a common modern qEEG analysis where 
EEG traces are displayed on the left and quantitative analysis 

showing the brain maps on the right.

Brief guide to operate the brainview neural scan system for 
patient assessment

The BrainView System comprises a workstation with a 
21-channel EEG amplifier, assessment and treatment technologies, 

Figure 3: An image of the BrainView Neural Scan System 
developed by Medeia Inc. The BrainView system is portable, 

easy-to-use, and non-invasive. The BrainView system is a 
21-channel EEG/ERP amplifier with a dedicated laptop and 

testing supplies. The system utilizes high-quality circuit boards 
and components to allow for high-quality brain measurements, 

as well as essential heart data (HRV).

To operate the BrainView Neural Scan System, follow these 
steps: Turn on your laptop, open the BrainView software, and 
ensure that the EEG amplifier device’s USB is properly connected. 
To confirm the connection, click on the settings button and press 
“Check Device Connection.” Position the patient comfortably in a 
chair facing the laptop screen at eye level. Choose the appropriate 
EEG cap size based on the patient’s head measurements, ensuring 
the cap is washed and fully dry before use.

For patient preparation, apply the three-lead ECG sensors-
place the red lead under the right clavicle, the black lead under the 
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left clavicle, and the yellow lead below the last left rib. Attach the 
pulse Ox SpO2 finger sensor to the non-dominant hand and place 
the response button in the dominant hand. In the software, select 
“New Measurement” and then “Neurofunctional Response Test.” 
Choose options for eyes open, eyes closed, evoked response mixed, 
and evoked response auditory tests. Avoid selecting shorter testing 
times; the test should last at least 20 minutes for accurate cognitive 
assessment.

Proceed to the patient information section, select “New” or 
“Existing Patient,” and enter the patient’s details, including name, 
date of birth, gender, weight, height, medications, symptoms, or 
previous diagnoses. Progress to the patient questionnaire, guiding 
the patient through detailed answers—an essential step.

In the pre-test screen, check signal quality. Place the EEG cap on 
the patient’s head, ensuring it fits snugly but not too tight. Use a gel-
blunt needle to inject electrogel on every EEG electrode, ensuring 
it pops up approximately with 1 milliliter. Wiggle in a circular 
motion to move hair out of the way. Begin with the green ground 
and reference electrodes, as they are crucial. Check the connection 
quality in the BrainView software, aiming for all indicators to be 
green or blue. Wait for any orange dots to change before proceeding.

Once all signals are good, start the test, checking waveforms to 
ensure all 21 channels are functioning correctly. Place headphones 
over the patient’s cap and ears, connecting the other end to the 
device amplifier’s audio port. All test instructions will be played 
over the laptop speakers, with ERP special noises played to the 
patient through the headphones.

Ensure a quiet testing environment. Instruct the patient to 
avoid talking, muscle movement, or eye blinking. Use the response 
button to start the test, which includes a baseline reading with eyes 
open and closed, as well as auditory and visual exercises. Midway, 
if data quality is insufficient, the software will prompt a recheck.

The eyes-closed test follows, and the final stage involves ERP 
visual and auditory stimuli. The patient responds to specific 
instructions, allowing assessment of evoked responses and 
working memory.

After a successful test, view the results on the overview page, 
disconnect the patient, and wash and dry the cap before testing the 
next patient. The software results, starting with the neurofunctional 

test option, provide a general summary with scales ranging from 
red (abnormal) to green (healthy), helping diagnose and assess the 
patient’s cognitive health. Light green is borderline, while yellow 
and orange indicate areas of concern.

Results and Discussion

The BrainView database includes data from 28,283 subjects 
(14,165 males, 14,118 females) for eyes-open resting EEGs and 
eyes-closed condition, as depicted in figure 4 and detailed in 
table 1. The database comprises 50.1% males and 49.9% females, 
spanning an age range from 4 to 85 years. 

Figure 4: The BrainView database was represented by a similar 
number of female and male subjects ranging in age from 4 to 85 

years.  

Total Subjects Healthy Subjects
Age
(years) Total Male Female Total Male Female

4-5 254 139 115 78 43 35
6-7 269 151 118 83 47 36
8-9 338 193 145 106 61 45
10-11 404 223 181 128 71 57
12-13 491 268 223 157 86 71
14-16 829 399 430 271 131 140
17-19 872 418 454 284 136 148
20-24 1034 460 574 338 150 188
25-29 1242 565 677 401 177 224
30-34 1230 590 640 383 197 186
35-39 1845 885 960 575 295 280
40-44 1755 825 930 574 288 286
45-49 2122 1042 1080 593 313 280
50-54 2097 1058 1039 587 315 272
55-59 2097 1058 1039 587 315 272
60-64 2620 1355 1265 608 315 293
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65-69 2620 1355 1265 608 315 293
70-74 2620 1355 1265 608 315 293
75-79 2096 1084 1012 486 252 234
80-84 1448 742 706 343 176 167
Total 28,283 14,165 14,118 7,798 3,998 3,800

Table 1: The Brain View database comprises subjects, ranging 
from four years of age as the youngest to 85 years as the oldest, in 
both eyes open and eyes closed resting EEGs. The distribution is 

tabulated as 48.5% males and 51.5% females.

When examining the sensitivities of the BrainView qEEG 
database, table 2 illustrates that the age-dependent data are 
modeled under a normal/Gaussian distribution, with over 95% 
of healthy subjects falling within +/-2 standard deviations, and 
more than 97% falling within +/-3 standard deviations. Hence, 
BrainView can aid in identifying and distinguishing abnormal EEG 
values in clinical patients, and can transform EEG data into various 
Z-scores, encompassing absolute power, relative power, power 
ratio, asymmetry, coherence, and phase.

AGE ±2SD >=2SD <=-2SD ±3SD >=3SD <=-3SD
04-10 0.95441 0.9772 0.97723 0.997442 0.99872 0.998723

10-15 0.95439 0.97734 0.97714 0.997439 0.998733 0.998714
15-20 0.95442 0.97733 0.97712 0.997448 0.998732 0.998712
20-30 0.95434 0.97723 0.97722 0.997439 0.998725 0.998728
30-40 0.95435 0.97734 0.97731 0.997432 0.998732 0.998735

40-50 0.95443 0.97725 0.97723 0.997445 0.998729 0.998723
50-85 0.95445 0.97723 0.97716 0.997443 0.998729 0.998712
ALL 0.95448 0.9772 0.97727 0.997444 0.998726 0.998725

Table 2: Brain View qEEG database sensitivities are modeled under a normal/Gaussian distribution, with over 95% of healthy subjects 
falling within +/-2 standard deviations, and greater than 97% falling within +/-3 standard deviations in an age-dependent analysis.

Normative Database Sensitivities

FP = TP/(TP + FP) or FN = TP/(TP + FN)

Furthermore, the sensitivity and specificity of the database for 
various clinical conditions. To assess the database’s sensitivity 
and specificity to a particular clinical condition, a total of 20,485 
patients were examined. Each control patient in the study suffers 
from a brain disorder, with Anxiety being the most prevalent 
condition and Addiction being the least prevalent. The database 
identified Alzheimer’s Disease with a sensitivity of ~86%, and a 
specificity of ~83% among the 1,098 control patients. This was 
closely followed by PTSD, which showed ~89% sensitivity but 
only 79% specificity. The database demonstrated the lowest 
sensitivity (~60%) and specificity (~59%) in identifying patients 
with Addiction (n = 820). Although the number of control patients 
with Anxiety was the highest (n = 3,906), the resulting levels of 
sensitivity (~65%) and specificity (~64%) were not the highest. 
This suggests that sample size does not appear to significantly 

impact the database’s sensitivity and specificity for a particular 
clinical condition. Overall, these findings suggest a strong ability of 
the database to detect various brain disorders.

The Z-score plays a critical role in a database’s identification of 
various biomarkers linked to specific clinical conditions (Table 3). 
By examining sensitivity and specificity under different parameter 
types, such as Z-scores, across various testing conditions, one 
can assess, validate, and subsequently employ the association of 
certain parameters or biomarkers with a particular brain disorder 
in clinical settings, thereby enhancing diagnosis. Apart from 
Z-scores, both relative and absolute powers are significant and 
distinguishing features utilized in qEEG databases for discerning 
various clinical brain conditions. Additionally, frequency band 
imbalances linked with diverse clinical conditions may serve as 
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biomarkers for disease identification. Refer to table 4 for a summary 
of delta/theta, alpha, and beta imbalances associated with various 
clinical conditions, thus potentially acting as additional biomarkers 
for individual clinical conditions.

Clinical  
Condition Indicator Code Test Stage Indicator 

Frequency Type Nb of 
Patients Sensitivity Specificity

ADD OC-Ref-L6-Alpha-PO-Asymmetry EyeOpen vs 
EyeClosed

Alpha Relative 
Power 
Ratio

240 95.75 59.77

ADD EC-Avg-L4-Beta3a-ZO EyeClosed Beta3a Relative 
Z-Score

130 84.37 70.97

ADD ERP-WhiteNoise-tP2 ERP White 
Noise - P2 

latency

Time 210 82.25 61.34

ADD EC-Avg-L4-Beta-ZO EyeClosed Beta Relative 
Z-Score

130 74.64 68.38

ADD EC-Avg-L1-Beta3a-ZO EyeClosed Beta3a Relative 
Z-Score

170 74.05 65.88

ADD EC-Ref-L1-Alpha-PO EyeClosed Alpha Relative 
Power

120 73.96 65.49

ADHD EC-Ref-T3-Beta-Peak-PR EyeClosed Beta - Peak Relative 
Power

120 75.42 70.87

ADHD ERP-WhiteNoise-tP3b ERP White 
Noise - P3b 

latency

Time 470 73.22 74.28

ADHD EC-Avg-L6-Alpha-PA EyeClosed Alpha Absolute 
Power

810 72.29 74.50

ADHD EC-Avg-L6-F4T20-PA EyeClosed Total 
Power

Absolute 
Power

810 71.92 73.93

ADHD EO-Avg-L1-ThetaBeta3-PR-Ratio EyeOpen Theta - 
Beta3

Relative 
Power 
Ratio

910 71.46 69.35

Alzheimer EC-Ref-L4-Alpha-PO EyeClosed Alpha Relative 
Power

210 96.36 61.56

Alzheimer EO-Avg-L6-Beta2a-PR EyeOpen Beta2a Relative 
Power

240 93.79 75.93

Alzheimer EO-Avg-L6-Theta-PO EyeOpen Theta Relative 
Power

240 93.47 78.31

Alzheimer EO-Avg-L1-Delta1-PO EyeOpen Delta1 Relative 
Power

210 89.53 68.71
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Anxiety EC-Ref-L4-Beta2b-ZA EyeClosed Beta2b Absolute 
Z-Score

610 80.10 78.83

Anxiety EC-Ref-L4-Beta3a-ZA EyeClosed Beta3a Absolute 
Z-Score

610 79.83 78.67

Anxiety EO-Ref-L1-Beta3a-ZA EyeOpen Beta3a Absolute 
Z-Score

640 79.32 78.20

Anxiety EC-Avg-L6-Alpha2-PA EyeClosed Alpha2 Absolute 
Power

500 77.78 84.88

Autism EO-Avg-L6-Alpha2-PA EyeOpen Alpha2 Absolute 
Power

340 72.86 77.48

Autism EO-Avg-L4-Delta1-PA EyeOpen Delta1 Absolute 
Power

300 72.59 74.71

Autism EO-Avg-L6-F4T20-PA EyeOpen Total 
Power

Absolute 
Power

340 71.72 73.57

Autism EO-Avg-L4-Theta-PA EyeOpen Theta Absolute 
Power

300 71.37 70.93

Depression EO-Avg-L4-F3T8F12T26-PA EyeOpen Total 
Power

Absolute 
Power

160 89.77 59.76

Depression EO-Ref-L4-Theta2-PA EyeOpen Theta2 Absolute 
Power

170 83.86 56.70

Depression ERP-WhiteNoise-vN4 ERP White 
Noise - N4

Amplitude 100 80.66 66.00

Depression EO-Avg-L4-Delta1-ZA EyeOpen Delta1 Absolute 
Z-Score

160 70.12 62.57

Depression OC-Avg-L4-Gamma1-ZR-Asym-
metry

EyeOpen vs 
EyeClosed

Gamma1 Relative Z-
Score Ratio

140 70.01 66.71

Depression EO-Avg-L4-ThetaBeta3b-PR-Ratio EyeOpen Theta - 
Beta3b

Relative 
Power 
Ratio

160 66.29 58.34

Memory Dis-
order

EC-Avg-L1-Theta-PA EyeClosed Theta Absolute 
Power

630 73.29 75.47

PTSD EC-Avg-L6-Beta3a-ZR EyeClosed Beta3a Relative 
Z-Score

220 88.59 82.65

PTSD EO-Ref-L1-Delta-ZR EyeOpen Delta Relative 
Z-Score

230 83.98 78.22

PTSD EC-Avg-L6-Alpha1-ZR EyeClosed Alpha1 Relative 
Z-Score

220 81.01 76.08

PTSD EO-Ref-L1-F3T8F12T26-ZR EyeOpen Total 
Power

Relative 
Z-Score

230 80.86 80.68
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PTSD EC-Avg-L4-Theta-PR EyeClosed Theta Relative 
Power

250 80.55 77.56

Schizophrenia OC-Avg-L6-Alpha1-PO-Asymme-
try

EyeOpen vs 
EyeClosed

Alpha1 Relative 
Power 
Ratio

210 98.76 75.44

Schizophrenia EC-Avg-L6-Theta1-ZO EyeClosed Theta1 Relative 
Z-Score

240 92.21 64.46

Schizophrenia EC-Avg-L6-Delta2-ZR EyeClosed Delta2 Relative 
Z-Score

240 91.95 66.90

Schizophrenia EC-Avg-L6-Beta2a-PO EyeClosed Beta2a Relative 
Power

240 90.92 60.36

mTBI EO-Avg-L4-Theta1-PO EyeOpen Theta1 Relative 
Power

200 77.62 75.85

mTBI EO-Avg-L1-Beta3b-PR EyeOpen Beta3b Relative 
Power

250 72.99 70.46

mTBI EO-Avg-L1-Gamma1-ZR EyeOpen Gamma1 Relative 
Z-Score

250 72.91 71.70

mTBI ERP-ReactionVariance ERP GoNoGo - 
Reaction 
Variance

Time 280 71.00 75.71

mTBI ERP-GoNoGo-tP3 ERP GoNoGo - 
P3 latency

Time 210 69.63 67.95

Table 3: The parameters and conditions employed in examining various clinical brain disorders is displayed. The accuracy of identifying 
individual clinical conditions are depicted by the levels of sensitivity and specificity resulting from the testing conditions. For instance, 

specific parameter codes, frequencies, and parameter types were utilized to test, identify, and correlate these factors with particular 
clinical conditions, yielding a wide range of sensitivities and specificities.

Delta/Theta Imbalance Alpha Imbalance Beta Imbalance
Cognitive Impairment
Impulsivity
Hyperactivity
Focus and Attention Issues
ADHD
Socially Inappropriate
Easily Distracted
Excessive Speech
Disorganized
Hyper-Emotional
Traumatic Brain Injury (TBI)
Dementia
Learning Disorders
Autisim/Asperger’s

Depression
Victim Mentality

Excessive Self-Concern
Passive Aggressive

Irritability
Avoidance Behavior

Rumination
Anger

Self-Depreciation
Agitation

Fibromyalgia
Withdrawal Behavior

Anxiety
Obsessive Compulsive Disorder (OCD)

Migraine
Tension Headaches

Insomnia
Obsessive Thinking

Excessive Rationalization
Poor Emotional Self-Awareness

Panic Attacks
Worry

Chronic Pain
Hyper-Vigilant
Dislike Change

Restless

Table 4: The association of various clinical conditions with specific frequency band imbalances, including delta/theta, alpha, and beta 
imbalances, is illustrated. In addition to other complementary assessments, the correlation between frequency band imbalances and 

clinical conditions may serve as an additional biomarker for identifying the condition.
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Discussion

In constructing a new BrainView qEEG discriminant database, 
the study follows the criteria checklist of endorsed EEG norms. These 
EEG norms provide practical guidance on database construction, 
highlighting a common set of scientific, methodological, and 
statistical standards adhered to by both normative and discriminant 
databases. Furthermore, the discussion includes ERP biomarkers, 
qEEG features, and machine learning classifiers to further elucidate 
the process involved in discriminant database construction for 
various brain disorders.

EEG criteria checklist to guide normative/discriminant 
database construction

Depending on the disorder or purpose (diagnosis or prognosis), 
the selection of a sample for database creation involves careful 
consideration of factors such as a well-defined and disclosed set 
of inclusion/exclusion criteria. The determination of the sample 
size takes into account variables like age, gender, socioeconomic 
status, and geographical distribution where relevant [23]. 
Matousek and Petersen measured qEEG in 401 subjects (218 
females), ranging in age from 2 months to 22 years, residing in 
Stockholm, Sweden, all without negative clinical histories and 
performing at grade level [2]. The sample size varied from 18 to 
49 per one-year age grouping. Similar inclusion/exclusion criteria 
were later used in constructing the NYU normative database, 
the University of Maryland (UM) database, and Brain Resource 
International Database [2,4,24]. Rigorous screening of subjects in 
a representative normative ‘healthy’ database is crucial to include 
samples of healthy individuals, including normally functioning 
individuals, and exclude those with a history of neurological or 
psychiatric problems, school failure, and other deviant behaviors. 
“Representative sampling” entails a demographically balanced 
sample concerning gender, ethnic background, socioeconomic 
status, and age to minimize/prevent sampling bias.

Study subjects participate in active task tests involving recording 
EEG, EPs, and ERPs while a subject performs a perceptual or 
cognitive task. Such studies report reproducible task-dependent 
changes in brain dynamics, essential for understanding normal and 
pathological brain processes governing perceptual and cognitive 
function. In contrast, an eyes-closed or eyes-open EEG state, 
commonly used in developing reference normative EEG databases, 
involves an alert subject sitting quietly without movement. The eyes-

closed and eyes-open conditions are preferred for their simplicity 
and the relative uniformity of EEG recording conditions, enabling 
reliable cross-laboratory and cross-population comparisons.

Following data acquisition, artifact cleaning, and reliable 
digital EEG data conversion to time series, which may be re-
referenced or re-montaged, the data are then analyzed in either 
the time domain or the frequency domain. The selected normal 
subjects are grouped by age, with a sufficiently large sample size. 
The means and standard deviations of the EEG time series and/
or frequency domain analyses are computed for each age group. 
Transforms are applied to approximate a Gaussian distribution of 
the EEG measures that comprise the means. Once approximation 
to Gaussian is completed, Z-scores are computed for each subject 
in the database, and leave-one-out Gaussian cross-validation 
is computed to arrive at optimum Gaussian cross-validation 
sensitivity. Finally, the Gaussian validated norms are subjected to 
content and predictive validation procedures, such as correlation 
with neuropsychological test scores and intelligence, discriminant 
analyses, neural networks, and outcome statistics. Content 
validation is carried out with respect to clinical measures, such as 
intelligence, neuropsychological test scores, school achievement, 
and so forth. Predictive validation is carried out with respect to 
discriminative, statistical, or neural network clinical classification 
accuracy. Both parametric and non-parametric statistics are used 
to determine the content and predictive validity of a normative 
EEG database.

There is no absolute sample size considered optimal for a qEEG 
database, as statistically, sample size is related to “effect size” and 
“power” [2,23]. The smaller the effect size, the larger the necessary 
sample size to detect that effect. Another consideration related 
to sample size is the degree to which a sample approximates a 
Gaussian distribution. Increased sample size is often necessary to 
achieve a Gaussian distribution and cross-validation accuracy. An 
“adequate” sample size is one that enables a Gaussian distribution 
and cross-validation accuracy, considering the varying human 
development and maturation at different ages [2,4].

Not only does an adequate sample size matter, but the quality 
of the sample is also crucial. Sample adequacy in a qEEG normative 
database necessitates the strict removal of artifacts and measures 
to ensure high test-retest reliability. Historically, multiple trained 
individuals visually examined EEG samples from each subject in the 
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database. Manual artifact removal is necessary despite any digital 
signal processing methods used. Measures of split-half reliability 
and test-retest reliability (> 0.9) are crucial to demonstrate the 
internal consistency and reliability of the normative database [2,4].

The clinical sensitivity and specificity of qEEG are directly 
related to the stability and reliability upon repeat testing. QEEG 
has proven to be highly reliable and reproducible [2]. The inherent 
stability and reliability of qEEG can be demonstrated even when 
sampling/acquisition time frames are small, with 82% reliability 
following a 20-second EEG data acquisition, 90% reliability at a 
40-second acquisition time frame, and 92% reliability at 60 seconds 
[2]. Hamilton-Bruce., et al. found EEG recordings to be highly 
reliable even when the same EEG was independently analyzed by 
three different individuals [25]. Recommendations suggest at least 
60 seconds, and preferably 2 to 5 minutes, of artifact-free EEG 
recordings for clinical evaluation [2]. Predictive accuracy and error 
rates of any EEG-based prediction or analyses depend on the data 
constituting the EEG database and the statistical methods used. 

To assess the robustness of a database, various statistical tests 
are employed, including those found in peer-reviewed publications 
and tests for statistical validity, reliability, and cross-validation. 
Adherence to scientific standards in EEG machines and recordings 
is crucial, encompassing aspects such as amplifier matching 
(critical for normative databases but relatively less critical in 
standard “control group” studies), meticulous calibration, artifact 
elimination, and compliance with standards during acquisition, 
analysis, and approximation of EEG data to a Gaussian/normal 
distribution. E. Roy John and colleagues (1982 to 1988) formed a 
consortium of universities to address the ‘standardization’ need 
[2]. In the 1980s, matching different EEG systems was technically 
challenging due to primitive analytic software. To overcome 
this, qEEG users relied on relative power, as absolute power was 
not comparable between different EEG machines. The absence 
of frequency response standardization between different EEG 
machines meant no cross-platform standardization of qEEG. It 
wasn’t until the mid-1990s that computer speed and software 
development made amplifier matching and normative database 
amplifier equilibration possible.

The first statistics evaluating replication and independent 
cross-validation of normative qEEG databases were applied 
by E. Roy John and collaborators from 1974 to 1977 [2]. They 

compared EEG from a sample of New York Harlem black children 
with the Matousek and Petersen normative database (correlation 
> 0.8). Emphasis on the approximation to a Gaussian distribution 
was underscored by both Dr. E. Roy John and Dr. Frank Duffy 
in the 1970s and 1980s [2,26,27]. In 1994, the American EEG 
Association produced a position paper reiterating the statistical 
standards of replication, cross-validation, reliability, and Gaussian 
approximation as acceptable basic standards for any normative 
qEEG database [2]. The American EEG Society adopted the same 
standards. Dr. John and colleagues from the 1980s to the 1990s 
continued to evaluate and analyze the statistical properties of 
normative qEEG databases, including EEG samples obtained from 
different laboratories worldwide [2,4,28].

Comparative analysis using Z-scores was first applied by 
Matousek and Petersen [2]. They computed means and standard 
deviations in one-year age-groups and were the first to use t-tests 
and Z-scores to compare an individual to the normative database 
means and standard deviations. John., et al. expanded on the use of 
the Z-score for clinical evaluation, including multivariate measures 
such as the Mahalanobis distance metric [2,4]. Direct normalization 
of the Gaussian distribution using Z-scores is useful for comparing 
individuals to a qEEG normative database [4]. The standard-
score equation, where the mean is 0 and standard deviation is 1, 
is employed to cross-validate a normative database, emphasizing 
the importance of approximation to a Gaussian/normal normative 
qEEG database. Deviations to the right of the mean are positive, 
and those to the left are negative. Different values of Z allow for 
the calculation of different values of Y. For assessing deviation from 
normal, the values of Z above and below the mean, encompassing 
95% of the area of the Gaussian, are often used as a level of 
confidence necessary to minimize Type-I and Type-II errors [2].

Cross-validation is critical in determining the sensitivity, false 
positives, and false negatives of a normative database. Due to the 
expense of acquiring independent data, most cross-validations are 
computed using a leave-one-out cross-validation procedure [2,4]. 
Briefly, the procedure involves injecting microvolt calibration sine 
waves into the input of the amplifiers of different EEG machines 
and then injecting the same microvolt signals into the normative 
database amplifiers, obtaining two frequency response curves 
[4]. Equilibration of a normative qEEG database to a different EEG 
machine is the ratio of the frequency response curves of the two 
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amplifiers, used as amplitude scaling coefficients in the power 
spectral analysis. This step was crucial, enabling absolute power 
Z-scores and normative database comparisons. Relative power is 
only used when there is no equilibration of absolute amplitude, 
as relative power distorts the spectrum and depends on absolute 
power for its interpretation.

Predictive accuracy and error rates depend on the data 
that make up a given EEG database and the statistics pertinent 
to the database. The Supreme Court addressed the statistical 
foundations of the scientific method in Daubert, 1993, regarding 
the admissibility of scientific evidence [3]. The Four Daubert 
Factors for scientific standards of admissibility in Federal Courts 
include i) hypothesis testing, ii) error estimates of reliability and 
validity, iii) peer-reviewed publications, and iv) general acceptance 
[2,3]. Other factors pertinent to the admissibility in Federal Courts 
of scientific evidence obtained using EEG normative databases 
include a) inclusion/exclusion criteria, b) methods to remove 
artifacts and adequate sample sizes per age groups, c) demographic 
representativeness (e.g., balanced gender, ethnicity, socioeconomic 
status, etc.), d) means and standard deviations as being normally 
distributed or “Gaussian”, including Gaussian Cross-Validation, and 
e) content validity by correlations with neuropsychological test 
scores and IQ achievement scores, as validation.

The criteria checklist of EEG norms guiding normative database 
construction were meticulously adhered to in this study to develop 
the BrainView qEEG discriminant database, which follows a 
Gaussian distribution with its sample size. Developed using patient 
data, BrainView’s database discriminant function determines 
the likelihood that a patient belongs to a specific clinical group, 
helping to narrow the assessment to a specific clinical category. 
Moreover, BrainView surpasses the ‘normality’ databases in size, 
incorporating a larger sample size with a broader representation of 
both genders and similarly covering the ‘lifespan’ of the individuals. 
The larger sample size provides more data points to robustly 
support qEEG analysis. Only with a substantial number of subjects 
can one confidently depend on the accuracy of parameters such as 
predicted mean and predicted standard deviation. Besides applying 
spectral analysis to the EEG data to obtain quantitative metrics 
associated with behavorial-cognitive brain functions, another 
body of metrics is derived by using LORETA (Low-Resolution 
Electromagnetic Tomography), a source localization technique 

[29]. As a result, qEEG metrics are represented as two- or three-
dimensional brain maps for expert interpretation. QEEG, with its 
advanced digital analysis, facilitates detailed, user-independent 
assessments of functional abnormalities in the brain. 

ERP biomarker applications in discriminant database 
construction

While ERPs have been a known concept for many, their 
potential and cost-effective advantages were traditionally 
limited to specialized laboratory settings [7]. Recent engineering 
advancements, however, have brought portable EEG systems 
into the mainstream, making them more widely available and 
recognized. Simultaneously, historical challenges related to the 
complexity and variability of EEG data have been effectively 
addressed through advancements in signal processing and 
classification [9,30]. Consequently, over the past decade, extensive 
research and development efforts have culminated in the creation 
of a vital sign framework for managing brain health. This marks 
a significant shift, with ERPs transitioning from a specialized 
laboratory tool to a potentially transformative clinical asset. The 
potential role of ERP biomarkers in various brain disorders is 
discussed below.

ERP biomarkers in TBI/concussion

The primary objective of incorporating ERPs into clinical 
practice is to achieve a quantifiable measure of cognitive function. 
ERPs as neurophysiological metrics exhibit remarkable sensitivity 
in detecting alterations in cognitive processing across a diverse 
array of neurological, developmental, and mental health conditions. 
Notably, the N100 (auditory sensation), P300 (basic attention), 
and N400 (cognitive processing) are among the most extensively 
studied ERPs, covering a broad spectrum of information processing 
stages. ERPs are highly responsive tools with established reliability 
for assessing cognitive dysfunction, especially in concussion-
related impairments. Research in youth contact sports, like 
football and hockey, has recorded ERPs at key stages: baseline, 
injury, return-to-play, and season conclusion [11,31]. Notably, 
post-concussion changes were detectable in N100, P300, and N400 
ERPs, emphasizing their sensitivity. P300 amplitudes remained 
elevated post-return-to-play, indicating it as a sensitive biomarker 
to lingering impairment, applicable beyond diagnosed concussions 
to detect sub-concussive changes [31].
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Imaging methods like CT and MRI are effective in the initial 
stages of head injuries but often yield normal results later. ERPs, 
particularly the extensively researched P300, prove valuable in 
detecting subtle alterations in information processing due to diffuse 
axonal injury, especially in intensive care units [32,33]. Numerous 
studies consistently show reduced N100 and P300 amplitudes, 
along with delayed P300 latency, in traumatic brain injuries (TBI) 
[32,33]. Additionally, delayed N100 latency and decreased auditory 
N100 amplitude are observed [32]. P300 latency is delayed in TBI-
injured individuals, and correlates significantly with standard 
clinical measures in disorders of consciousness [34]. Reduced 
N400 amplitudes are noted days after injury [34]. Adults with 
childhood brain injuries also exhibit reduced N400 amplitude 
[35]. Rehabilitation, including intensive speech therapy, shows the 
re-emergence of components like N400. In conclusion, combining 
ERPs with clinical assessments provides valuable insights into 
neuropsychological mechanisms post-traumatic brain injuries.

ERP biomarkers in stroke

For stroke, the P300 effectively indicates cognitive recovery 
post-stroke. Within four weeks, P300 latency is notably delayed, 
and amplitude reduced [36]. Average P300 latency improves within 
12 months, but amplitude does not progress [36]. Studies show a 
significant reduction in P300 latency 24 months post-stroke [37]. 
In addition, N400 peak latency correlates with post-stroke aphasia 
progression [38]. Research has shown a strong link between the 
ERPs and standardized neuropsychological tests in both healthy 
individuals and those with neurological acquired brain injuries [7]. 

ERP biomarkers in mild cognitive impairment (MCI)/
Alzheimer’s disease (AD) transition

Multiple clinical studies have investigated the P300 as an 
indicator of cognitive functions, especially attention and working 
memory, with relevance to conditions like MCI, dementia, and AD 
[39]. Literature indicates that delays in P300 latency correlate 
with impaired memory processes [39,40]. P300 latency increases 
in dementia, correlating with disease severity [39]. A critical 
review by Horvath., et al. suggests that abnormalities in P300 
latency and amplitude (delay and reduction) serve as sensitive 
tools for detecting cognitive decline in AD [41]. P300 alterations 
may distinguish MCI from healthy controls and AD patients and 
aid in detecting the MCI-to-AD transition [41]. Similarly, the N400, 
another ERP component, is applied in MCI and dementia contexts. 

The N400, valuable in MCI and dementia, indicates reduced or 
abnormal responses, predicting MCI progression to dementia and 
serving as AD biomarkers [41]. Patients with dementia or MCI may 
exhibit reduced amplitude or absent N400s, useful in predicting 
MCI conversion to dementia, making the N400 a valuable biomarker 
for early AD detection and staging [41]. 

ERP biomarkers in multiple sclerosis (MS)

Cognitive dysfunction affects 30-70% of people with MS 
[42]. Research on the P300 reveals delayed latency and reduced 
amplitude in MS-related cognitive impairment [43]. Recent 
findings suggest P300 latency as a sensitive prognostic indicator for 
disability progression over 15 years [44]. Combining P300 studies 
with advanced neuroimaging, such as MRI, uncovered a positive 
correlation between lesion volume in the frontal horn and brain 
stem with P300 latency, emphasizing significant links between 
neurophysiological measures and brain anatomy alterations [45]. 
This integrated approach enhances our understanding of cognitive 
dysfunction in MS by examining P300 latency alongside structural 
changes in the brain.

ERP biomarkers in alcoholism

The literature consistently emphasizes a decrease in N100 
amplitude caused by alcohol consumption [46]. The P300 
response holds promise as an endophenotypic marker for alcohol 
dependence. Individuals with alcoholism often display diminished 
P300 amplitudes, and this occurrence is not solely attributable 
to alcohol’s adverse effects on the brain [46,47]. Significantly, 
numerous clinical and electrographic characteristics linked to 
alcohol dependence may return to normal levels following a period 
of abstinence. However, it is noteworthy that the reduction in P300 
amplitude persists, even after prolonged abstinence [33].

ERP biomarkers in attention deficit/hyperactivity disorder 
(ADHD)

For developmental conditions such as Autism Spectrum 
Disorder and ADHD, the N100 and P300 are also crucial biomarkers. 
A thorough 10-year review of ERP research on ADHD uncovered 
significant correlations between various ERPs, including N100 and 
P300, and the disorder [48]. Notably, distinctions from healthy 
individuals were observed in early orienting, inhibitory control, 
and error-processing components. In a meta-analysis focused on 
P300 characteristics in adults with ADHD, a consistent pattern 
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emerged, revealing significantly reduced P300 amplitudes in 
individuals with ADHD compared to controls [49]. This trend was 
reliably replicated across multiple studies included in the review. 
This finding aligns with existing research involving children with 
ADHD, and intriguingly, the amplitude reduction becomes more 
pronounced as individuals with ADHD age [49].

ERP biomarkers in autism spectrum disorder (ASD)

Children diagnosed with ASD display distinctive ERP 
patterns characterized by reduced allocation and engagement of 
attention resources during the processing of visual stimuli [50]. 
ERP outcomes have consistently unveiled notable differences 
in N100 and P300 latency and amplitude when compared to 
their neurotypical counterparts. Specifically, studies involving 
adolescents and young adults with ASD have highlighted N100 
differences, offering additional insights into potential sensory 
gating deficits within the ASD population [51]. In-depth analytical 
reviews focused on ASD and ERPs have thoroughly examined both 
visual and auditory-elicited ERPs, shedding light on impairments 
in lower and higher-level visual and auditory functioning within 
the ASD population [52].

ERP biomarkers in depression

The challenge of achieving objective psychiatric diagnoses 
has led to a focus on identifying biomarkers. ERPs, explored for 
their clinical utility, show potential biomarker roles in various 
psychiatric or mental health conditions. Depression is a prevalent 
and debilitating global illness, impacting various aspects of life 
[53]. Despite the effectiveness of antidepressants and cognitive-
behavioral therapies, a substantial percentage of patients do 
not respond adequately [54,55]. The complexity of this disorder, 
characterized by diverse clinical presentations and a lack of 
informative biomarkers, poses challenges for accurate diagnosis 
and successful treatment. The auditory P300 response has 
garnered attention as a potential biomarker for depression-related 
neural alterations [56]. Diminished P300 amplitude is observed in 
individuals with depression, especially those with suicidal ideation, 
psychotic features, or severe depression [57]. Findings by Key., et 
al. suggest accelerated cognitive aging in major depressive patients, 
highlighting the frontal P300 latency as a potential biomarker [58]. 

ERP Biomarkers in Schizophrenia

The latency of P300 is delayed in individuals with schizophrenia, 
and there is a notable sensitivity of P300 amplitudes to fluctuations 

in symptom severity [34,35]. Particularly, the auditory P300 
amplitude has been identified as a specific trait marker for 
schizophrenia [59]. This consistent observation of reduced 
P300 amplitude in individuals with schizophrenia, compared 
to healthy controls, corresponds with the frequently observed 
fronto-temporal atrophy in those with compromised attentional 
processing [60]. In addition to P300 abnormalities, other research 
has documented a decrease in N100 amplitude and an increase 
in N400 latency within the schizophrenia patient population 
[60,61]. These findings collectively contribute to a comprehensive 
understanding of the neurophysiological alterations associated 
with schizophrenia, shedding light on the intricate interplay 
between cognitive processing and structural changes in brain 
anatomy.

ERP biomarkers in post-traumatic stress disorder (PTSD)

In PTSD, a comprehensive review revealed reduced P300 
amplitude in response to stimuli, with context-dependent 
information processing dissociation [62]. The review also 
highlighted inconsistent findings regarding changes in N100 
response amplitude and latency. Additional research suggests 
that P300 results indicate a context-dependent information 
processing dissociation in PTSD, leading to reduced processing of 
neutral stimuli but enhanced processing of trauma-related stimuli 
or neutral stimuli in the context of trauma-related patterns [63]. 
PTSD is a persistent condition affecting an individual’s overall well-
being [62,63]. Healthcare professionals on the COVID-19 frontline 
face high rates of stress, anxiety, depression, and sleep problems, 
emphasizing the urgent need for effective strategies [64]. In 
PTSD research, the extensively studied P300 frequently exhibits 
abnormalities correlating with illness severity [62]. Differences 
in ERP features, especially improvements in basic attention and 
cognitive processing, are observed. Quantifying treatment impact 
is crucial for evidence-based interventions in individuals with 
PTSD.

Feature selection and classification for discriminant database 
construction 

As previously mentioned, discriminant function-based features 
and classifiers play a crucial role in the diagnosis of various 
brain disorders. Examining how these tools are tailored for 
specific conditions sheds light on the intricacies of constructing 
discriminant databases for enhanced disease detection, for AD, 
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MCI, MS, ASD, ADHD, alcoholism, depression, PTSD, schizophrenia, 
stroke, TBI/concussion.

Features and classifiers used in TBI/concussion discriminant 
databases

The Brainscope model incorporates a discriminant function 
specifically designed for studying TBI [65]. Another notable qEEG 
discriminant function, developed by Thatcher., et al. involved 20 
and 16 qEEG features, respectively [66,67]. The original function 
consisted of 20 measures, including coherence, phase, amplitude 
asymmetry, and relative power at various frequency bands 
[66]. It demonstrated accuracy in discriminating mTBI (aka. 
concussion) patients from healthy controls. In a subsequent study 
in 2001, another discriminant function, utilizing 16 measures 
of EEG coherence, phase, and amplitude asymmetry, was used in 
classifying mild from severe TBI [67].

QEEG-based discriminant functions, incorporating multivariate 
features, show promise for TBI detection, enhancing accuracy, 
specificity, and sensitivity. However, caution is warranted, as 
some studies indicate a return of prominent qEEG features to 
normal within a few days after a concussion [68, 69]. To improve 
the discriminative power of classification algorithms, combined 
analyses, more selective features, or larger sample sizes may 
be considered [65,67]. Careful consideration is necessary when 
dealing with a high computational cost, especially with numerous 
features, where a reduced number of features can expedite 
computation and reduce noise [70,71].

Discriminant functions within the TBI domain can be employed 
to classify patients based on severity or injury presence, utilizing 
various metrics (e.g., spectral or functional connectivity features) 
within a single model. However, relying on a single type of analysis 
may lack sufficient discriminating power, especially considering 
the altered alpha, delta, beta, and theta power reported in mTBI 
[65,66]. Improved accuracy is observed when a combination of 
qEEG features is utilized. For example, using spectral analysis alone 
may be insufficient, but when combined with coherence, it becomes 
a viable tool for mTBI detection, showing adequate discriminative 
power.

Prichep., et al. presented data from a large mTBI group of 
633 patients, utilizing a significantly more complex discriminant 
function with variables such as spectral analysis measures, 

information theory-based measures, scale-free brain activity 
measures, fractal dimension measures, functional connectivity 
measures, and various multivariate measures [65]. The improved 
discriminant function could differentiate between mTBI and 
moderate/severe TBI patients, indicating its ability to detect mTBI 
and distinguish it from more severe forms. Overall, these studies 
suggest that a well-designed discriminant function can serve as a 
practical tool for mTBI detection.

Features and classifiers used in stroke discriminant databases

Several studies have assessed strokes using various EEG 
features, including band power changes, brain symmetry index, 
and spatiotemporal measures, yielding diverse outcomes 
[72,73]. Caiola., et al. developed feature-based models employing 
statistical, spatiotemporal, and connectivity EEG measures to 
classify normal, TBI, and stroke patients, generating 1406 features 
for each 3-minute EEG segment [73]. Feature selection through 
Linear Discriminant Analysis (LDA) and ReliefF methods identified 
192 and 100 most crucial features, respectively. Machine learning 
models trained with these feature sets, including Decision Trees, 
Support Vector Machines (SVMs), and k-Nearest Neighbors (KNNs), 
demonstrated optimal performance with the medium gaussian 
SVM model for LDA features and the cubic SVM model for ReliefF 
features, outperforming the full feature set. 

Utilizing EEG data-driven machine learning, Vivaldi., et al. 
also supported TBI and stroke classification [74]. Their analysis 
revealed distinctive EEG patterns in TBI and stroke patients 
compared to normal subjects, showcasing changes in coherence 
and relative Power Spectral Density (PSD), particularly in fronto-
temporal and parietal regions. LDA feature selection and SVM 
models consistently performed well across both classifications 
and validation methods. Compared to normal controls, both TBI 
and stroke patients exhibited an overall reduction in coherence 
and relative PSD in delta frequency, with stroke patients displaying 
more significant changes and a global decrease in theta power. The 
study suggests EEG-based machine learning models as promising 
tools for TBI and stroke detection and classification.

Features and classifiers used in schizophrenia discriminant 
databases

Schizophrenia, a severe psychiatric disorder affecting 
approximately 1% of the global population, is characterized 
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by persistent debilitation [75]. Commonly utilized features for 
classification involve amplitude and latency components such as 
N100, P300, P50, and N100, with various classifiers tested [76]. 
Santos Febles., et al. explored the effectiveness of Multiple Kernel 
Learning (MKL) for classifying schizophrenia based on ERP 
measures extracted from auditory and visual P300 and mismatch 
negativity (MMN) [76]. To manage the extensive feature set, the 
Boruta method, a Random Forest (RF)-based feature selection 
algorithm, was applied, categorizing features into peak-related, 
peak-to-peak related, and signal-related features, resulting in 726 
features for classification (282 for auditory P300, 282 for visual 
P300, and 162 for MMN]. The classification accuracy reached 83% 
with the entire dataset and increased to 86% after applying Boruta 
feature selection, emphasizing the auditory P300 paradigm’s 
significant contribution. Incorporating MKL and Boruta into the 
analysis of these neurophysiological biomarkers can enhance the 
diagnosis of schizophrenia.

Features and classifiers used in PTSD discriminant databases

Recent studies have explored the use of microstate characteristics 
and functional connectivity in machine learning models to predict 
PTSD [77,78]. Non-spectral features such as reduced frontal to 
posterior right hemispheric alpha Granger causality (GC) and 
reduced theta orthogonalized power envelope correlations (PECs) 
have been investigated by Clancy., et al. and Toll., et al. respectively 
[77,78]. Most EEG studies on PTSD traditionally focus on individual 
feature types. Kim., et al. stands out as one of the few studies 
exploring combinations of different resting-state EEG features, 
including spectral power, spatial covariance, and network metrics 
[79]. Using a Riemannian geometry-based classifier, the Fisher 
geodesic minimum distance to the mean (FgMDM), Kim., et al. 
compared it with conventional classifiers such as LDA, SVM, and RF 
[79]. The FgMDM classifier demonstrated an average classification 
accuracy of 75.24%, outperforming LDA, SVM, and RF classifiers 
with maximum accuracies of 66.54%, 61.11%, and 60.99%, 
respectively. This study emphasizes the potential of the FgMDM 
framework in significantly improving the diagnostic accuracy of 
PTSD when utilizing resting-state EEG data.

Li., et al. presented a study that computed multiple EEG features 
commonly used in EEG research [80]. These features fall into three 
categories: spectral features (power, asymmetry, frontal theta/

beta ratio, peak alpha frequency, and 1/f exponent), functional 
connectivity features (Imcoh, wPLI, PEC, and GC), and features 
capturing the temporal dynamics of EEG (microstates and DFA 
exponents). The investigation focused on distinguishing veterans 
with probable PTSD from combat-exposed controls using feature 
selection and machine learning classification. The best-performing 
classifier, an SVM using all features, achieved a balanced test 
accuracy of 62.9%. Functional connectivity features were 
identified as the most crucial for classifications, with SVM using all 
features showing the highest accuracy. The selected features were 
predominantly connectivity features, particularly Imcoh and GC, 
along with wPLI. The only consistently selected non-connectivity 
feature was the 1/f exponent. Notably, classifiers using specific 
features like 1/f exponents, GC, Imcoh, and wPLI had slightly 
lower but still respectable balanced test accuracies compared 
to using all features. Subtyping within PTSD revealed distinct 
patterns, leading to an improved classifier accuracy of 79.4% for a 
subtype characterized by hyperconnectivity in parietal, temporal, 
visual areas, and the posterior cingulate cortex. The study’s novel 
framework combining subtyping and machine learning offers 
valuable insights into potential quantifiable biomarkers for PTSD 
subtypes.

Features and classifiers used in depression discriminant 
databases

In Cai., et al. discriminant EEG analysis for depression detection, 
linear and nonlinear features were utilized, categorized into 
Time [e.g., peak, variance, skewness, kurtosis, Hjorth parameters 
(activity, mobility, complexity)] and Frequency (e.g., relative 
and absolute centroid frequency, relative power, and absolute 
power) domains [81]. Nonlinear features included C0-complexity, 
Kolmogorov Entropy, Shannon Entropy, Correlation Dimension, 
and Power-Spectral Entropy, extracted from various EEG 
waves and electrodes. A total of 270 features were obtained for 
feature selection using the MRMR technique. Four classification 
algorithms [KNN, SVM, Classification Trees (CT), and Artificial 
Neural Networks (ANN)] were compared, with KNN achieving the 
best performance at 79.27% accuracy. “Absolute power of theta 
wave” consistently stood out as a strong performer, suggesting a 
robust link between theta wave power and depression—a crucial 
characteristic for detection. 
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Higuchi’s Fractal Dimension (HFD) and Sample Entropy 
(SampEn) were also found effective in detecting depressive 
disorders [82]. These measures, extracted from EEG signals, were 
employed with various machine learning algorithms, achieving 
an average accuracy ranging from 90.24% to 97.56%. SampEn 
demonstrated better performance among the two measures. Using 
HFD and SampEn alongside machine learning techniques allows 
for accurate discrimination between patients diagnosed with 
depression and controls, serving as a highly sensitive and clinically 
relevant marker for depressive disorder diagnosis.

Deslandes., et al. further aimed to distinguish depression from 
dementia using five qEEG variables for discriminant analysis 
[83]. These variables included normed monopolar relative power 
theta for Cz, normed monopolar relative power alpha for P3, 
normed bipolar relative power theta for the head, normed bipolar 
relative power total for T3-F7, and normed bipolar coherence 
delta for fronto-temporal. The discriminant analysis effectively 
distinguished between dementia and depression, showing a high 
level of agreement (91.2%) with clinical diagnoses (DSM-IV]. The 
qEEG variables also demonstrated a high level of concordance 
(90.4%) with clinical diagnoses, highlighting the accuracy of this 
method in distinguishing between Primary Degenerative Dementia 
and Major Depressive Disorder. Deviations in qEEG variables 
associated with slow rhythms and alpha rhythm further supported 
the discriminant accuracy of the method.

Features and classifiers used in alcoholism discriminant 
databases

Alcohol Use Disorder (AUD) poses a global social and health 
challenge, complicating screening due to the subjectivity of self-
reports [84]. Mumtaz., et al. focused on developing a machine 
learning method to classify alcohol abusers from healthy controls 
and distinguish among healthy controls, alcohol abusers, and 
alcoholics [85]. QEEG features like absolute power (AP) and 
relative power (RP) were extracted and selected using methods 
like t-test and principal component analysis (PCA). LDA, SVM, 
Multilayer Back-Propagation Network (MLP), and Logistic Model 
Trees (LMT) were employed for classification, with LMT achieving 
the best performance with 96% accuracy, 97% sensitivity, and 
93% specificity. Subgroup classification for AUD patients also 
yielded accuracy exceeding 90%. Results highlight significant 
neurophysiological differences among alcohol abusers, alcoholics, 

and controls, emphasizing decreased theta in AUD patients 
compared to healthy controls. 

Spectral power analysis, particularly focusing on higher theta 
power, has been a popular EEG method to discriminate between 
alcoholics and control groups [86]. Machine learning techniques 
have shown promise in clinical applications for screening alcoholic 
subjects from healthy controls, offering potential solutions to these 
challenges [85,86].

Features and classifiers used in ADHD discriminant databases

Researchers have extensively explored the potential of EEG 
measures in diagnosing ADHD. Nonlinear features have been 
extracted from EEG signals for ADHD detection using classifiers 
like SVM, multilayer perceptron, and KNN [87]. Higuchi and 
Katz fractional dimension-based feature extraction methods are 
commonly employed due to the complex and nonlinear nature 
of EEG signals [87]. Studies, such as Joy., et al. have used these 
methods, with 112 features, to discriminate between ADHD and 
normal subjects, achieving a maximum classification accuracy of 
100% with an ANN classifier [87].

ERP features have also been explored for ADHD diagnosis, with 
Merzagora., et al. finding that non-linear classifiers outperformed 
linear ones, achieving an accuracy of over 90% [88]. Mueller., et al. 
accurately classified ADHD patients and controls using independent 
ERP components, achieving a 92% classification accuracy with a 
non-linear SVM classifier [89]. Challenges persist in identifying 
the optimal feature extraction technique and applying the most 
effective classifier algorithm for achieving maximum classification 
accuracy in ADHD diagnostic methods.

Features and classifiers used in ASD discriminant databases

The conventional EEG measures utilized in ASD discriminant 
function analysis since 1986 include PSD and coherence [90]. 
Instead, Ahmadlou., et al. used complexity and chaos theory to 
unveil a nonlinear feature space for investigating EEG signals in 
children with ASD [91]. Fractal Dimension was proposed to explore 
the complexity and dynamical changes in the ASD brain, with 
Higuchi’s Fractal Dimension (HFD) and Katz’s Fractal Dimension 
(KFD) investigated as computation methods. The study presented a 
wavelet-chaos-neural network methodology for an automated EEG-
based diagnosis of ASD, tested on a dataset from two groups: nine 
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children with ASD (aged 6 to 13) and eight non-ASD children (aged 
7 to 13). Using a radial basis function classifier, the model achieved 
an impressive accuracy of 90%, based on the most significant 
features identified through analysis of variation statistical tests. 
Specifically, three KFDs in delta (loci Fp2 and C3) and gamma 
(locus T6) EEG sub-bands demonstrated high significance (P < 
0.001). Significant differences between ASD and control groups 
were observed, particularly in gamma, beta, and alpha bands 
for HFD, and in gamma, beta, and delta bands for KFD [90]. The 
study highlighted the effectiveness of KFD as a discriminating tool 
between ASD and control groups. Overall, this research emphasizes 
how fractal dimension, by providing additional information about 
EEG signals, can serve as an important instrument for identifying 
brain abnormalities in ASD.

Features and classifiers used in MS discriminant databases

The McDonald criteria, involving clinical features, cerebrospinal 
fluid analyses, imaging techniques, and blood tests, is widely used 
for diagnosing MS due to the absence of distinct markers [92]. 
Nonlinear EEG analysis in MS is a relatively novel area, with fractal 
dimension, recurrence quantification analysis, mutual information, 
and coherence being commonly used for dynamics analysis [93]. 

Mohseni., et al. proposed a hybrid approach to MS diagnosis, 
aiming to reduce classification error rates [94]. The method 
involves analyzing EEG descriptors in both time and frequency 
domains. A modified ant colony optimization method (m-ACO) is 
used for feature selection, followed by a SVM classifier to determine 
the presence of the disease. A metaheuristic algorithm adjusts SVM 
parameters to counter overfitting. The study achieves significant 
classification accuracy, exceeding 98.5%, particularly in alpha, beta, 
and gamma bands. Features extracted include statistical measures 
(integral of the primary signal, absolute mean value, root mean 
squares, waveform length, zero-crossing, etc.) in the time domain 
and fractal dimension-based features (Katz dimension, Higuchi 
dimension, Petrosian dimension, correlation dimension, self-
similar fractal). A total of 31 features are generated, and the final 
selected vector exhibits strong classification accuracy, considering 
only 25 to 40% of the total features. The study also highlights the 
importance of considering different EEG signal characteristics, such 
as linear frequency and temporal features, for a comprehensive 
analysis. The proposed methodology showcases the effectiveness 
of combining linear and nonlinear signal descriptors, feature 

selection through m-ACO, and an optimized SVM classification 
algorithm. Thus, the hybrid approach of integrating both linear 
and nonlinear features has achieved superior accuracy levels 
and illustrated its potential as a valuable tool for improving MS 
diagnostic outcomes.

Features and classifiers used in MCI/AD discriminant 
databases

While CSF and neuroimaging markers are gold standards for in 
vivo AD assessment, their invasiveness and cost limit their frontline 
screening utility [95]. EEG has been extensively studied as a non-
invasive alternative for AD analysis [96]. Linear and nonlinear 
features have been utilized to diagnose AD in recent years. For 
AD detection from EEG findings, researchers have recommended 
diverse features representing EEG complexity, synchrony, and 
regularity. During the feature extraction phase, discriminant 
features are extracted from EEG signals. Feature selection or 
reduction methods can be applied to decrease the number of 
features, making them independent and reducing computational 
complexity. 

Ge., et al. aimed to develop a robust discriminant system based on 
time-frequency features of qEEG integrated with machine learning 
techniques [97]. Four wavelet features and Permutation Entropy 
were extracted for classification using eight supervised learning 
classifiers (LDA, Logistic Regression (Logreg), KNN, SVM, RF, Naïve 
Bayes (Nbayes), Ensemble Methods (Adaboost), NN). The proposed 
routine achieved an average accuracy of 93.18% for differential 
diagnosis of AD patients and normal controls. The study revealed 
that combinations of parametric and nonparametric features 
provided high accuracy in discriminating between AD patients 
and normal controls, with the best accuracy of 93.18% achieved 
using all five features (Variance, Pearson Correlation Coefficient, 
Interquartile Range, Hoeffding’s D Measure, Permutation Entropy]. 
The core features indicating AD included decreased alpha power 
frequency and a general increase in delta and theta rhythms [98]. 
Huang., et al. proposed that combined alpha and theta global field 
power were the best discriminating variables between AD patients 
and controls (84% accuracy) and AD and MCI subjects (78% 
accuracy) [98]. 

In another study, a RF model effectively predicted the 
conversion of Early Mild Cognitive Impairment (EMCI) patients to 

46

Construction and Validation of a New BrainView qEEG Discriminant Database

Citation: Jonathan RT Lakey., et al. “Construction and Validation of a New BrainView qEEG Discriminant Database". Acta Scientific Neurology 7.6 (2024): 
25-51.



AD with 93.6% accuracy [99]. Removing certain features improved 
accuracy, highlighting the importance of feature selection. The RF 
consistently outperformed SVM implementations, emphasizing its 
effectiveness for individualized MCI to AD conversion prediction. 
The analysis with Logreg found that individual versions of 6 
(age, race, FAQ, ADAS13, ADAS11, MMSE), 9 (age, race, APOE4, 
hippocampal and ventricular volume, ADAS13, ADAS11, FAQ, 
MMSE), and 13 (age, race, APOE4, hippocampal and ventricular 
volume, ADAS13, ADAS11, FAQ, MMSE, #words memorized, 
learned, forgotten, %words forgotten) features exhibited lower 
accuracy than the RF model. Although Logreg had a lower area 
under the curve (AUC) than RF and XGBoost, it outperformed 
the best SVM model. Nonetheless, the best model, a 9-feature RF 
implementation, achieved an accuracy of 93.6% for predicting 
conversion from EMCI to AD. This model using EMCI patients can 
predict conversion 5-7 years prior to AD onset.

 Feature selection and classifier choice depend on the data 
nature, discrimination task complexity, and result interpretability. 
It’s essential to tailor these elements to the specific requirements 
of the discriminant database construction and analysis. In both 
cases, validation methods such as cross-validation and external 
validation are crucial to database performance assessment.

Future studies on brainview discriminant databases for 
various brain disorders

Normality data for all three ERP (N100, P300, N400) responses 
in healthy individuals across the lifespan are available in literature 
sources and the BrainView reference database. The next objective is 
to establish discriminant databases for various clinical conditions, 
including neurological (AD, MCI, MS), developmental (ADHD, 
ASD), and mental health (PTSD, schizophrenia, depression), as 
well as alcoholism and acquired brain injury. Medeia Inc. aims to 
make BrainView qEEG discriminant databases the gold standard 
for diagnosing and predicting brain disorders, employing 
discriminant analyses to match patient qEEG profiles with specific 
clinical profiles. The creation of the normative database marked 
a significant milestone, inspiring the development of databases 
to enhance patient assessment across a range of neurological 
disorders. Comprehensive validation is essential to ensure the 
reliability and applicability of BrainView in diverse clinical contexts.

Conclusion

The application of qEEG and ERP in clinical practice 
holds significant promise as a tool offering insights into the 
neurophysiological aspects of psychological disorders. QEEG 
has the potential to blend a high level of standardization with a 
personalized medicine approach to mental health care. However, the 
effectiveness of qEEG in clinical settings relies on the advancement 
of automated and standardized processing methodologies. Past 
research utilized resting-state qEEG for biomarker discovery, 
facing challenges due to non-standardized databases and analytical 
complexities. Standardization is crucial for qEEG to establish itself 
among established biomarker development methods, particularly 
given its wide variability across individuals. Substantial technical 
and statistical enhancements in the field since the inception of 
qEEG have considerably contributed to its clinical viability. 

To unlock its full potential in clinical practice, qEEG necessitates 
the integration of standardized de-artifacting techniques, qEEG 
databases, and interpretation methods. The cross-validated and 
reliable BrainView qEEG database emerges as a promising tool 
to unlock and utilize biomarkers for various brain disorders, 
aiming to enhance the quality of life for many. Future studies will 
include the development and validation of BrainView discriminant 
databases for various brain disorders, paving the way for the 
adoption of BrainView as the gold standard for neurophysiological 
and neuropsychological assessments in clinical settings.
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