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POLG: DNA Polymerase Subunit Gamma; MNGIE: Mitochondrial 
Neurogastrointestinal Encephalomyopathy; MERRF: Myoclonic 
Epilepsy with Ragged-Red Fibers; MELAS: Mitochondrial 
Encephalomyopathy, Lactic Acidosis, And Stroke-Like Episodes; 
ADEM: Acute Disseminated Encephalomyelitis; NGS: Next 
Generation Sequencing.
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Abstract
The POLG gene is responsible for production of alpha subunit, of a protein called polymerase gamma (pol γ). Pol γ is a mitochondrial 

DNA polymerase, responsible for replication of the mitochondrial genome. POLG-related disorders comprise a continuum of broad 
and overlapping phenotypes that can be distinct clinical entities or consist of a spectrum of overlapping phenotypes. Presentations 
within a given family are usually similar. Although almost any organ system can be involved, evidence to date suggests that diabetes 
and cardiomyopathy are not very common in POLG-related disorders, distinguishing them from other multisystem mitochondrial 
diseases. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later- onset syndromes 
arising from mt DNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 
2% of the population carrying these mutations. Clinical features may include hypotonia, developmental delay, seizures, movement 
disorder (e.g., myoclonus, dysarthria, choreoathetosis, parkinsonism), Myopathy(e.g., ptosis, ophthalmoplegia, proximal > distal 
limb weakness with fatigue and exercise intolerance), Ataxia, Peripheral neuropathy, Episodic psychomotor regression, Psychiatric 
illness (e.g., depression, mood disorder),Endocrinopathy (e.g., premature ovarian failure).Most common disorders caused by POLG 
mutations are Alpers-Hutten ocher syndrome (AHS),Childhood myocerebrohepatopathy spectrum(MCHS),Myoclonic epilepsy 
myopathy sensory ataxia (MEMSA),Ataxia neuropathy spectrum (ANS),Autosomal recessive progressive external ophthalmoplegia 
(arPEO), Autosomal dominant progressive external ophthalmoplegia (adPEO). This review will summarize POLG related disorders 
and their mimics focusing mainly on the neurological manifestations of these conditions.
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Introduction

ATP is the major supplier of energy to development and normal 
functioning of the central nervous system [1]. In neurons, the 
majority of ATP is generated in the mitochondria by oxidative 

phosphorylation (OXPHOS) via the electron transport chain (ETC) 
and ATP synthase. OXPHOS system comprises of 90 proteins and 
around 13 are derived from the mitochondrial genome. In human 
genome, mitochondria is a closed circular DNA molecule of 16,569 
bp that also encodes 22 tRNAs and 2 ribosomal RNAs that are 
required for synthesis of the 13 polypeptides. The mitochondrial 
DNA (mtDNA) is located in discrete nucleoids localized within the 
inner matrix of the mitochondrion, each of which contains one or 
two copies of the mtDNA [2,3].

DNA polymerase subunit gamma (POLG or POLG1) is an enzyme 
that in humans is encoded by the POLG gene [4]. The maintenance 
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of mitochondrial DNA (mtDNA) is critically dependent upon 
polymerase-γ (pol-γ),encoded by the nuclear gene POLG. In 
humans, mtDNA is copied by a 195 kDa heterotrimer consisting of 
a catalytic subunit (p140, coded by POLG on chromosome 15q25) 
and two identical accessory subunits (p55, coded by POLG2 on 
chromosome 17q).The catalytic subunit (p140) possesses DNA 
polymerase, 3′→5′ exonuclease and 5′dRP lyase activities, whereas 
the accessory subunit (p55) is a DNA binding factor that confers 
high processivity by increasing the affinity of the heterotrimer for 
template DNA. Pol-γ has a high base-substitution fidelity (<2×10 
- 6 errors per nucleotide) and is relatively accurate over short 
repeat sequences, but longer homopolymeric tracts (> 4 bp) lead 
to slippage during replication [5-8].

There is a close relationship between the mitochondrial 
transcription factor A (mtTFA) and mtDNA levels [9], suggests 
that mtTFA binds to mtDNA as a chaperone, protecting against 
oxidant damage [10]. Nuclear respiratory factor-1 (NRF-1) is 
a transcription factor that regulates the expression of many 
mitochondrial proteins, NRF-1 expression is related to cellular ATP 
levels and binds to promoter regions of POLG, POLG2 and mtTFA 
[11]. Graziewicz., et al. described about the proteins involved in 
mtDNA replication and repair [12]. The first pathogenic mutations 
in POLG were identified in families with autosomal dominant 
chronic progressive external ophthalmoplegia [13]. several reports 
identified POLG mutations in patients with ataxia specially in the 
Norwegian and Finnish populations [14,15].

In one large Australian Cohort, mutations in POLG represented 
the most prevalent single gene cause of mitochondrial disease, 
accounting for 10% of adult mitochondrial disease cases [16]. 
POLG mutations are the most frequent cause of mitochondrial 
epilepsy at all ages [17],  and also account for 10 - 25% of PEO 
[18] and  > 10% of ataxia cases [19]. Age of onset of the POLG- 
related disorders ranges from infancy to late adulthood, however 
those with adolescent- onset or adult- onset disorders, do not 
present with a discrete clinical syndrome. Neurological findings 
in this type of disorders can be cortical [20,21,22], seizures [22], 
cerebrovascular involvement [21,22], extrapyramidal movement 
disorder [23,24], peripheral neuropathy [21,25], cerebellar 
involvement [21], dementia [21], sensorineural deafness [21], 
ptosis and external ophthalmoplegia [26].

Typical POLG related disorders

Alpers-huttenlocher syndrome (AHS)

AHS, one of the most severe phenotypic manifestations in 
the spectrum of POLG-related disorders, is characterized by a 
progressive and ultimately severe encephalopathy with intractable 
epilepsy, neuropathy, and hepatic failure. While AHS is usually 
fatal, the age of onset, rate of neurologic degeneration, presence of 
hepatic failure, and age of death vary [27-29].

Childhood myocerebrohepatopathy spectrum (MCHS)

MCHS presents between the first few months of life and about 
age three years with developmental delay or dementia, lactic 
acidosis, and a myopathy with failure to thrive. Other features of 
a mitochondrial disorder that may be present include liver failure, 
renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing 
loss. Seizures are not present, at least early in the disease course 
[30].

Myoclonic epilepsy myopathy sensory ataxia (MEMSA)

Previously referred to as spinocerebellar ataxia with epilepsy 
(SCAE),MEMSA now describes the spectrum of disorders with 
myopathy, epilepsy, and ataxia without ophthalmoplegia. Cerebellar 
ataxia, generally the first sign, begins in young adulthood as a 
subclinical sensory polyneuropathy. Epilepsy develops in later 
years, often beginning focally in the right arm and then spreading to 
become generalized. The seizures may be refractory to conventional 
therapy, including anesthesia. Recurrent bouts of seizure activity 
are accompanied by progressive interictal encephalopathy. The 
myopathy in MEMSA may be distal or proximal, and, as in the other 
POLG-related disorders, it also may present as exercise intolerance 
[31].

Ataxia neuropathy spectrum (ANS)

ANS includes mitochondrial recessive ataxia syndrome (MIRAS) 
and a separate entity known as sensory ataxia neuropathy 
dysarthria and ophthalmoplegia (SANDO) [32]. ANS is characterized 
by ataxia, neuropathy, and (in most but not all affected individuals) 
an encephalopathy with seizures. The encephalopathy is similar to 
that seen in AHS but tends to be more slowly progressive and can 
even be mild. The neuropathy may be sensory, motor, or mixed and 
can be severe enough to contribute to ataxia – so-called sensory 
ataxia. About 25% of affected individuals have cramps, but clinical 
myopathy is rare. Other features may include myoclonus, blindness, 
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and liver dysfunction [20,33].

Autosomal recessive progressive external ophthalmoplegia 
(arPEO)

Progressive PEO without systemic involvement is the hallmark 
of arPEO. Caution needs to be exercised, however, when making the 
diagnosis of arPEO, as some POLG pathogenic variants associated 
with arPEO are also associated with ANS and other POLG-related 
disorders with systemic involvement. Thus, many individuals who 
have no other clinical findings at the time of diagnosis with isolated 
arPEO develop other manifestations of POLG-related disorders 
over subsequent years or decades [34-36].

Autosomal dominant progressive external ophthalmoplegia 
(adPEO)

The universal manifestation of this adult-onset disorder is 
progressive weakness of the extraocular eye muscles resulting 
in ptosis and strabismus [37]. A generalized myopathy is present 
in most affected individuals, leading to early fatigue and exercise 
intolerance. Some affected individuals(in what has been called 
“chronic progressive external ophthalmoplegia plus,” or CPEO+) 
have variable degrees of sensorineural hearing loss, axonal 
neuropathy, ataxia, depression, parkinsonism, hypogonadism, and 
cataracts [38,39]. Cardiomyopathy and gastrointestinal dysmotility 
are less common [40-42].

Atypical POLG related disorders

MNGIE- like disorder

Recently Huang., et al. reported a 49-year-old Chinese man 
with MNGIE-like syndrome involved leukoencephalopathy and 
was associated with novel POLG mutations [43]. Tang S., et al. 
supported the fact that POLG1 mutations may cause MNGIE-
like syndrome, but the lack of leukoencephalopathy and the 
normal plasma thymidine favor POLG1 mutations as responsible 
molecular defect [44]. Prasun., et al. also reported mitochondrial 
neurogastrointestinal encephalomyopathy (MNGIE)-like 
phenotype in a patient with a novel heterozygous POLG mutation 
[45]. Van Goethem., et al. also reported novel POLG mutations in 
progressive external ophthalmoplegia mimicking mitochondrial 
neurogastrointestinal encephalomyopathy [46].

Movement disorder syndromes

In a cohort of adult patients with mitochondrial movement 

disorders, 5 of 42 (12%) had POLG mutations. These five patients 
all had parkinsonism, and three also had restless legs syndrome 
[47]. POLG- related parkinsonism has an earlier onset than 
idiopathic Parkinson disease, typically ~40 years but as early as the 
third decade in some families [48], and is associated with initially 
asymmetric clinical and imaging features and a good response to 
levodopa [47]. Palatal tremor also seems to be a characteristic 
feature in some patients with POLG mutations, occurring together 
with facial dyskinesia and progressive ataxia in the so- called 
progressive ataxia palatal tremor (PAPT) syndrome [49] however 
recently reported 2 cases was due to novel tauopathy [50]. Dystonia, 
the most frequent movement disorder in other mitochondrial 
disorders such as Leigh syndrome, is rarely observed in patients 
with POLG mutations [51,52].

Mimics to POLG related disorders

Few disorders are reported in literature supported by 
neuroimaging, CSF findings, neuropathological and even symptoms 
which can easily confuse with this type of disorderss when patient 
presents to clinic for the first time. Clinicians should bear in 
mind few important features which can help to differentiate this 
disorders.

MERRF and MELAS

POLG- related epilepsies can mimic classic mitochondrial 
syndromes, including myoclonic epilepsy with ragged- red fibres 
[53] and mitochondrial encephalomyopathy, lactic acidosis and 
stroke- like episodes [54] or overlap syndrome [55].

ADEM

A viral prodrome can sometimes be observed, which might 
arouse clinical suspicion of encephalitis [56]. Some individuals 
were reported to have oligoclonal bands in their cerebrospinal 
fluid (CSF). In one case, neuropathology revealed features of acute 
disseminated encephalomyelitis (ADEM), again suggesting an 
underlying immune- mediated pathology [57].

Multiple sclerosis (MS)

Laguna., et al. reported POLG1 variations presented as MS [58].

Discussion
POLG encodes the catalytic subunit of DNA polymerase γ, 

the enzyme responsible for replicating the mitochondrial DNA 
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(mtDNA).Mutations in POLG are associated with a clinical 
continuum of heterogeneous syndromes, ranging from infantile- 
onset epilepsies and liver failure to late- onset ophthalmoplegia, 
muscle weakness, parkinsonism. Mitochondrial DNA defect can 
be either depletion or deletions. Full clinical assessment should 
encompass a multisystem evaluation, including vision and hearing, 
and cardiac, hepatic, renal, gastrointestinal and respiratory 
function as it can involve multiple organs at cellular level. Diagnostic 
modalities can range from basic EEG, Neuroimaging, blood and CSF 
biomarkers to complex strategies like histopathology, respiratory 
chain enzymology and whole exome sequencing or next generation 
sequencing(NGS) as part of molecular genetics.

Conclusion
POLG-related disorders comprise a continuum of overlapping 

phenotypes that were clinically defined long before their 
molecular basis was known. Most affected individuals have some, 
but not all of the features of a given phenotype. It is associated 
with numerous clinically heterogeneous syndromes characterized 
by a quantitative and/or qualitative mtDNA defect as discussed in 
this review. Seizures dominate the clinic picture from childhood 
to even ataxia and parkinsonism in adulthood which indicate 
poor prognosis. Multiple organs can be involved at a single time 
or at the time of presentation. Treatment is mainly in the form 
of antiepileptic, liver transplant and conservative most of the 
times as there is no effective disease modifying therapies, despite 
tremendous advances in mitochondrial disease diagnostics in 
recent years. Future research should focus on inventing novel 
agents which can target the disease at the grass root level.
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