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Abstract
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Heart Failure and its subtype Heart Failure with Preserved Ejection Fraction (HFPEF) represent a vexing pathophysiological 
conundrum. Till date the exact mechanism of heart failure progression and HFPEF has not been clearly defined. However recent 
research into cardiac energetics and the suprising success of drugs like SGLT2 Inhibitors show us that our understanding of heart 
failure pathophysiology needs to be redefined in terms of metabolic rather than structural abnormality. We seek to propose a novel 
cyclical model explaining Diastolic Dysfunction in terms of energy deficit and its relation with coronary microcirculation insufficiency 
to explain progressive HFPEF and likely mechanism of action of SGLT2 Inhibitors to interrupt it. 
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Abbreviations

ACC: American College of Cardiology; ADP: Adenosine Di 
Phosphate; AHA: American Heart Association; AMI: Acute 
Myocardial Infarction; ARNI: Angiotensin Receptor Neprilysin 
Inhibitor; ATP: Adenosine Tri Phosphate; Ca: Calcium; CAD: 
Coronary Artery Disease; CFR: Coronary Flow Reserve; CMR: 
Cardiac Magnetic Resonance; CPT: Carnitine Palmitoyl Transferase; 
ECG: Electrocardiogram; FA: Fatty Acid; HCM: Hypertrophic 
Cardiomyopathy; HF: Heart Failure; HFHS: High Fat High 
Sucrose; HFPEF: Heart Failure with Preserved Ejection Fraction; 
HFREF: Heart Failure with Reduced Ejection Fraction; HOCM: 
Hypertrophic Obstructive Cardiomyopathy; LCAD: Long Chain 
Acyl-CoA Dehydrogenase; LVH: Left Ventricular Hypertrophy; 

LVOT: Left Ventricular Outflow Tract; MACE: Major Adverse 
Cardiovascular Events; MHD: Metabolic Heart Disease; MINOCA: 
Myocardial Infarction with Non Obstructive Coronary Arteries; 
MRA: Mineralocorticoid Receptor Antagonist; NAD: Nicotinamide 
Adenine Dinucleotide; PCr: Phospho-Creatine; PET: Positron 
Emission Tomography; PKA: Protein Kinase A; SCFA: Short Chain 
Fatty Acid; SERCA: Sarcoplasmic/Endoplasmic Reticulum Calcium 
ATPase; SGLT: Sodium Glucose co-Transporter; SGLTi: Sodium 
Glucose co-Transporter Inhibitor; TnC: Troponin C; VLCAD: Very 
Long Chain Acyl-CoA Dehydrogenase

Introduction

Heart Failure (HF) is defined as a complex clinical syndrome 
with symptoms and signs that result from any structural or 
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functional impairment of ventricular filling or ejection of blood 
(ACC) [1]​.

Myocardial energy deficiency and subsequent altered metabolic 
pathways are increasingly being recognized as an essential part of 
the heart failure jigsaw [2,3].

Up to half of the cases  [4-7]​  with heart failure suffer from 
Heart Failure with Preserved Ejection Fraction (HFPEF). It has 
been shown that progressive worsening of diastolic dysfunction is 
associated with increased incidence of heart failure [8]​. However, 
the pathophysiology behind this progressive worsening has not 
been clearly understood. 

The discovery of SGLT2 Inhibitors has recently upended the 
successful management of HFREF as well as HFPEF. The exact 
mechanism of action of SGLT2I on cardiac physiology is unknown. 

Hence we seek to examine a novel pathophysiological model 
by reconciling the seemingly disparate processes of diastolic 
dysfunction and energy deficiency into a single unified cycle 
incorporating the effects of myocardial circulatory insufficiency 
acting as a binding force via which the two feed off each other 
causing progressive heart failure also thus explaining the metabolic 
effect of SGLT2I. 

Uniqueness of cardiac metabolism

Fatty acid (FA) oxidation serves as a major source of energy 
(60-90%) for the myocytes while carbohydrates and multiple other 
substrates can also be potentially used depending on the metabolic 
conditions. The myocardium also has very limited anaerobic 
capacity [9,10]​. The net energy yield of long-chain FA oxidation is 
much higher (105 ATP per molecule of Palmitic acid) compared to 
glucose (31 ATP) and anaerobic metabolism (2 ATP). The fetal heart 
utilizes glucose and lactate as its main energy sources, however 
after birth this gradually transitions towards FA oxidation which 
becomes the predominant energy source thereafter [11]. Thus, this 
metabolic switch provides a major energy boost but effective FA 
oxidation is only guaranteed under an abundant supply of oxygen 
[12,13].

Cardiac metabolism in heart failure

Heart failure has been shown to diminish the mitochondrial 
capacity to oxidize FA and ATP production becomes inefficient [14]​.

Similarly, it has been shown in conditions such as those leading 
to cardiac hypertrophy and in heart failure that there occurs a 
reverse switch to a fetal type energy metabolism [15]​. This is 
accompanied by re-expression of several isoforms of enzymes, of 
transcription factors, and of structural and other proteins normally 
expressed in the fetal heart [16]​. This switch is considered to enable 
cardiomyocytes to maintain ATP production with lesser oxygen 
and is also seen in chronic hypoxia due to several pathological 
conditions [17]​.

A decrease in palmitate utilization [18,19] has been 
demonstrated in rats with cardiac hypertrophy from pressure 
overload and in myocardial infarction as has a reduction in oleate 
oxidation in pacing induced heart failure in dogs [20]​. Similar 
findings have been noted in human studies involving patients with 
nondiabetic dilated cardiomyopathy and patients with idiopathic 
cardiomyopathy [21,22]​. Rodent heart failure models also show 
downregulation of CPT 1 and 2, which are important components 
of the carnitine shuttle [18,23].

Reduced levels of the enzymes responsible for beta oxidation of 
very-long chain and long-chain FA, VLCAD, and LCAD has also been 
noted and is thought to be responsible for a “backlog” in fatty acid 
metabolism, resulting in accumulation of toxic lipid intermediates 
in the heart, further aggravating the metabolic derangements in 
heart failure [23-25].

In summary, the cumulative data from multiple animal and 
human studies demonstrates increased dependence on inefficient 
metabolic pathways like glycolysis, causing progressive energy 
deficit [18,26] in the failing heart.

Regulation of active relaxation by [ADP]

Calcium dissociation from TnC (Troponin C) and detachment 
of actin-myosin crossbridge have been proposed as possible rate 
limiting steps in myocardial relaxation [27]. It is important to 
identify that apart from being the energy supply for the power 
stroke, ATP supply is also important for the detachment of the 
myosin head from the actin filament and other active processes in 
diastole. Increase in [ADP] can adversely affect cross bridge cycling 
and SERCA2a pump activity by reducing the activity of their ATPase 
reactions. During cross bridge cycling if some myosin heads remain 
attached to the actin molecule as an intact crossbridge, the myocyte 
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remains in a partially contracted state with increased resting tone 
during diastole [28]. Similarly, decreased activity of the SERCA2a 
pump leads to residual cytosolic Ca2+ which does not return to 
the baseline and slows cross bridge cycling by keeping the binding 
sites exposed due to its continual attachment to the Troponin 
complex [28]​. This phenomenon has been observed in many 
studies and given several different names in the past like “diastolic 
contracture”​ [27,29]​, “diastolic stiffness” [30]​, “resting tension” 
[30]​, “decreased LV chamber volume” “decreased LV cavity size” 
[31], but they essentially indicate Diastolic Dysfunction. It also 
shares similarities with the state of rigor mortis in skeletal muscles 
post mortem causing contractures after depletion of [ATP] [32]​
. Thus, as per available evidence, rising [ADP] due to progressive 
energy (ATP) deficit culminates into diastolic dysfunction [33-35].

Coronary blood flow

The human heart has the highest per gram oxygen consumption 
of any organ, extracting up to ~70% to 80% of delivered oxygen 
even under resting conditions [36-38]. This means that any 
further enhancements to oxygen extraction are rather limited 
[40] and maintenance of coronary perfusion is vital to sustain the 
production of high energy phosphates.

As a result of the tremendous compressive forces of the 
myocardium in systole around 80% of antegrade blood flow to 
the left ventricle occurs during diastole [36,37]. Thus compared 
to other non-compressible tissues, where the arterial to venous 
pressure difference determines tissue perfusion, myocardial 
blood flow is determined by the gradient between diastolic blood 
pressure and intramyocardial tissue pressure [39-42].  Hence, it 
may be inferred that inability of the myocardium to adequately 
relax viz diastolic dysfunction is detrimental to its own perfusion. 

Diastolic dysfunction cycle

We seek to propose a model explaining progressive heart failure 
as a cyclic interplay between diastolic dysfunction and energy 
deficiency due to impaired intramyocardial perfusion (Figure 1).

Individual links between diastolic dysfunction cycle

Current understanding of the pathophysiology of heart failure 
considers components of this cycle in isolation or in binary form. 

Figure 1: Diastolic Dysfunction Cycle (ATP – Adenosine  
Tri-phosphate).

The associations between individual components of the diastolic 
dysfunction cycle have been established over the last few decades 
(Figure 2). 

Figure 2: Links between components of Diastolic Dysfunction 
Cycle Red Arrow [43-46] Green Arrow [47-50] Purple Arrow 

[33,53] Blue Arrow [52].

Diastolic dysfunction has been implicated as a determinant 
of myocardial circulation even in the absence of coronary artery 
disease in studies based on CFR [43-46]. Conversely, several 
studies have shown that myocardial circulatory insufficiency 
produces diastolic dysfunction in acute conditions like AMI (Acute 
Myocardial Infarction) as well as in chronic CAD (Coronary Artery 
Disease) [47-50]. Similarly, diastolic dysfunction associated with 
energy deficit has been documented in multiple animal studies 
[35,51]. Recent studies involving animal models fed with HFHS 
(High Fat High Sucrose) diet also seem to provide useful insights 
into this relationship [53].
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Toersten Doesn’t., et al. studied the effect of pressure overload 
on Sprague-Dawley rats and concluded that decreased rates of 
substrate oxidation with activation of compensatory metabolic 
pathways predicts development of HFPeF and subsequently HFReF 
[52].

In the light of this growing body of evidence, we believe 
progressive Heart Failure needs to be considered as a result of a 
cyclic relationship between Diastolic Dysfunction, Energy Deficit 
and Myocardial Circulatory Insufficiency to explain the progression 
of heart failure from an asymptomatic to advanced state.

How SGLT2 inhibitors may improve cardiac energy metabolism 
and diastolic dysfunction

Historically the management of Diabetes Mellitus consisted 
of mainly insulin secretagogues and direct insulin injections. The 
boosted insulin levels essentially increase the glucose uptake by 
the tissues for metabolism reducing circulating sugar levels. 

However as we have pointed above this excessive insulin action 
is counter productive to cardiac metabolism as glucose is not the 
preferred energy substrate for the human heart which mainly 
uses fatty acids for its energy requirements as fatty acids are more 
energy dense providing higher ATP’s per molecule. 

The newer anti diabetic drugs viz SGLT2I however have a 
different mechanism of actions. Instead of producing high spikes 
of endogenous or exogenous insulin SGLT2I essentially throw 
out the excess sugars via the kidneys instead of forcing metabolic 
tissues like the heart to utilize the sugars. In addition by promoting 
lipolysis due to decreased circulating carbohydrates SGLT2I restore 
the natural and substrate balance for the heart allowing to revert 
to preferentially use more fatty acids. This restoration of energy 
supply from energy dense fatty acids then contributes to resolving 
diastolic dysfunction explaining the beneficial effects of SGLT2I in 
heart failure. 

A similar mechanism of action can be used to explain the cardio- 
beneficial effects of other newer drugs like GLP1 Analogues. 

Conclusion

The uniqueness of the myocardial metabolism and its blood 
flow mechanisms along with a continuous unrelenting workload 

makes for an insatiable energy appetite which can mainly be 
satisfied during the diastolic phase of the cardiac cycle. 

Decades of research trying to improve systolic function of the 
failing heart led to development and use of various inotropic drugs, 
yet none have been found to significantly improve survival.

We believe, in the light of new research and results from 
trials of newer drugs like SGLT2I, that a new model of heart 
failure progression should be considered which explains the 
cyclic interplay between diastolic dysfunction and energy deficit 
myocardial metabolism. 

Using this new model we can observe that newer drugs like 
SGLT 2 inhibitors are likely altering cardiac substrate metabolism 
and correcting a possible energy deficit. Unlike insulin or insulin 
secretagogue’s like sulphonylurea’s, SGLT2i do not force the heart to 
utilize more glucose by potentiating insulin levels but instead allow 
the heart to switch back to a predominant Fatty Acid metabolism 
restoring its energy deficit and thus improving Diastolic function. 

Recognising this altered cardiac metabolism based on glucose, 
the resulting ATP deficit and abnormal diastolic function as a 
key driver of progressive heart failure may hold the key towards 
opening new avenues of research for understanding and prevention 
of progressive heart failure.
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