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Abstract
Differential equation; more commonly, ordinary differential equation (ODE); and Petri Net are complementary methods common-

ly used in dynamic systems modelling. However, the differences between ODE models and Petri Net models have not been adequately 
studied. In this study, we implement a closed 4-compartment SEIRS infectious disease model in both ODE and Petri Net, to examine 
the differences by comparing their simulation results. Our simulation results suggest that although there are differences between the 
simulation results across various ODE solvers, the differences between ODE or Petri Net implementations are significant differences 
(t ≥ 15.34, p-value ≤ 1.59E-12) as a whole; but these differences may not be significant across all compartments. This suggests that 
ODE model and Petri Net model may reveal different insights into the same problem; hence, supporting the view that ODE model and 
Petri Net model are complementary.
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Introduction

Dynamic systems modelling (DSM) is the conversion of real 
entities into mathematical form [1] and using it to find solutions 
to or to study real world issues [2]. Irwin and Wang [3] define 
DSM as description of multiple components of a phenomenon that 
are viewed as a system, which can be used to predict the interac-
tions over time. DSM has been used to in a wide variety of fields; 
including, economics [4], biology [5], social science [6], crisis 
management [7], and even history [8]. Mathematical models are 
instrumental tools in the field of epidemiology [9]; especially in 
infectious disease epidemiology [10,11], and substance abuse epi-
demiology [12-14]. The two common methodologies for modelling 
dynamic systems [15] are differential equations, more commonly 
ordinary differential equation (ODE), and Petri Net; and has been 
shown to be complementary to each other [16]. 

However, there has been little studies examining the differences 
between ODE models and Petri Net models. The only notable study 

to date is by Zhao and Krishnan [17] whom modelled mRNA trans-
lation and protein synthesis using ODE, and Petri Net; and found 
that small differences between the simulation results from ODE 
model and Petri Net model. In this study, we implement a closed 
4-compartment SEIRS model in ODE and Petri Net, to examine the 
differences in simulation results. SEIRS model is a well-known in-
fectious disease epidemiological model [18-20]. Our simulation 
results suggest that there are overall significant differences (t ≥ 
15.34, p-value ≤ 1.59E-12) between ODE or Petri Net implementa-
tions of SEIRS model but these differences may not be significant 
across all compartments. This further suggests that ODE model and 
Petri Net model may reveal different insights into the same prob-
lem, which supports the view that ODE model and Petri Net model 
are complementary [16].

Method

A closed 4-compartment SEIRS model, without births and 
deaths, were adapted from Bjørnstad., et al. [21], and implemented 
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in both ODE and Petri Net. The ODE equations are (a)                       , 
(b)                               ,(c)                         , and (d)                              . The 
correspondence between ODE model and Petri Net model is based 
on Soliman and Heiner [22]. The ODE model was implemented and 
simulated using all 11 ODE solvers described in Ling [23], for 100 
days using 0.1 and 1 day as time steps. The Petri Net model was 
implemented and simulated using PNet [24] for 100 days using 
1 day as time step. Differences within different ODE solvers, and 
between ODE solvers and Petri Net, were determined using root 
mean square error (RMSE) [25] and Pearson’s correlation [26,27], 
and statistically analyzed using t-test where p-value of less than 
0.05 is considered significant. 

Results and Discussion

Time step is important in ODE solver

The choice of time step in ODE solver is a balance between ac-
curacy and computational efficiency [28]. As an exploratory analy-
sis and baseline for comparing between ODE and Petri Net mod-
els, we examine the differences between two different time steps 
(time step of 0.1 and 1.0) across the 11 ODE solvers. For time step 
of 0.1 (Figure 1), our results show that the mean RMSE across 
the ODE solvers (n = 55) is 0.004096 with standard deviation of 
0.0080220 whereas the mean Pearson’s correlation is 0.9998 with 
standard deviation of 0.00049051. For time step of 1.0 (Figure 2), 
our results show that the mean RMSE across the ODE solvers (n 
= 55) is 0.006649 with standard deviation of 0.0099896 whereas 
the mean Pearson’s correlation 0.9995 with standard deviation of 
0.0010202. Paired t-tests show insignificant differences between 
the 2 different time steps for both RMSE (t = 1.393, p-value = 0.169) 
and Pearson’s correlation (t = 1.779, p-value = 0.0809). Despite so, 
our results suggest that time step may affect accuracy in a non-
uniform manner. For example, simulation results from RK4(3/8) 
solver are substantially different compared to other solvers when 
time step is 0.1 (Figure 1) but when time step is 1, RK4 solver is 
substantially different compared to other solvers (Figure 2). The 
impact of time step on ODE simulation has been studied [29-32] for 
more than 30 years, and our exploratory examination suggests that 
time step may play a role in ODE solver accuracy.

Overall significant differences between ODE and petri net im-
plementations

Using the same time step (time step = 1) for both ODE and 
Petri Net, the mean RMSE between the 11 ODE solvers and Petri 

Figure 1: RMSE and Pearson’s correlation of simulation results 
using different ODE solvers with Time Step = 0.1. The lower  
triangular matrix shows RMSE while the upper triangular  

matrix shows Pearson’s correlation.

Figure 2: RMSE and Pearson’s correlation of simulation results 
using different ODE solvers with Time Step = 1.0. The lower  
triangular matrix shows RMSE while the upper triangular  

matrix shows Pearson’s correlation.

Net is 0.04201 with standard deviation of 0.0029335 whereas the 
mean Pearson’s correlation is 0.9956 with standard deviation of 
0.00070189. The mean RMSE (t = 21.95, p-value = 7.08E-29) and 
mean Pearson’s correlation (t = 15.34, p-value = 1.59E-12) be-
tween ODE solvers and Petri Net are significant compared to with-
in ODE solvers, assuming unequal variances. This suggests that 
there are significant differences considering the simulation results 
in entirety. Of the 11 ODE solvers using time step of 1.0, the results 
from CK4 solver show largest RMSE (RMSE = 0.02692) and lowest 
Pearson’s correlation (r = 0.9973) to the results from RK4. Hence, 
by graphing the results from CK5, RK4, and Petri Net together (Fig-
ure 3), the differences between ODE-implemented and Petri Net-
implemented SEIRS are visible. 
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Figure 3: Comparison between simulation results from ODE 
solvers (RK4 and CK5) and Petri Net. Panels A, B, C, and D il-

lustrate susceptible (S), exposed (E), infected (I), and recovered 
(R), respectively.

However, statistical comparisons by compartment using paired 
t-test (Table 1), our analysis show that the simulation results from 
either ODE solvers are not significantly different compared to the 
simulation results from Petri Net at 95% confidence for exposed 
populations (t = 0.15, p-value = 0.878), and significantly differ-
ent at 95% confidence for infected populations (t = 2.26, p-value 
= 0.0258). Yet, the simulation results from the 2 ODE solvers, RK4 
and CK5, are significant for every compartment (t ≥ 3.62, p-value 
≤ 4.71E-04). Hence, our results support previous study [17] show-
ing that small differences between the simulation results from ODE 
model and Petri Net model. More importantly, our results demon-
strate that these differences may not be uniform and/or significant 
across all compartments despite overall significant differences if all 
compartments are taken in entirety. This further suggests that ODE 
model and Petri Net model may reveal different insights into the 
same problem; therefore, supporting the view that ODE model and 
Petri Net model are complementary [16]. 

Compartment Measure
Comparison

RK4 / CK5 RK4 / PN CK5 / PN
Susceptible
(S)

t 12.83 11.12 11.12
p-value 8.98E-23 3.95E-19 3.94E-19

Exposed
(E)

t 3.62 0.15 0.15
p-value 4.71E-04 8.78E-01 8.78E-01

Infected
(I)

t 9.86 2.26 2.26
p-value 2.25E-16 2.58E-02 2.58E-02

Recovered
(R)

t 11.26 10.28 10.28
p-value 1.99E-19 2.64E-17 2.64E-17

Table 1: Paired t-test analysis of simulation results from ODE solvers (RK4 and CK5) and Petri Net by compartments. 

Conclusion

In this study, we implement a closed SEIRS model in ODE and 
Petri Net and show that there are significant differences (t ≥ 15.34, 
p-value ≤ 1.59E-12) between ODE or Petri Net implementations of 
SEIRS model but these differences may not be significant across all 
compartments. Hence, ODE model and Petri Net model may reveal 
different insights into the same problem, supporting the view that 
ODE model and Petri Net model are complementary.

Supplementary Materials

Data set for this study can be downloaded at https://bit.ly/
ODE_vs_PNet.
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